期刊文献+

单晶铜纳米加工过程中热效应及缺陷结构的原子尺度模拟(英文) 被引量:5

Atomistic simulation of thermal effects and defect structures during nanomachining of copper
下载PDF
导出
摘要 基于建立的新型三维仿真模型,采用分子动力学方法模拟单晶铜(100)表面纳米加工过程,研究材料的去除机理和纳米加工过程中系统的温度分布与演化规律。仿真结果表明:系统的温度分布呈同心型,切屑温度最高,并且在金刚石刀具中存在较大的温度梯度。采用中心对称参数法区分工件中材料缺陷结构的形成与扩展。位错和点缺陷是纳米加工过程中工件内部的主要缺陷结构。工件中的残余缺陷结构对于工件材料的物理属性和已加工表面质量具有重要影响。位错的成核与扩展、缺陷结构的类型均与纳米加工过程中系统的温度有关。加工区域温度升高有利于位错从工件表面释放,使工件内部位错结构进一步分解为点缺陷。采用相对高的加工速度时,工件中残留缺陷结构较少,有利于获得高质量的加工表面。 Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页 中国有色金属学报(英文版)
基金 Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
关键词 单晶铜 原子尺度模拟 热效应 分子动力学模拟 纳米加工 温度分布 缺陷结构 位错 空位 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations vacancies
  • 相关文献

参考文献36

  • 1KOMANDURI R, CHANDRASEKARAN N, RAFF L M. MD simulation of nanometric cutting of single crystal aluminum--Effect of crystal orientation and direction of cutting [J]. Wear, 2000, 242: 60-88.
  • 2FANG T H, WENG C I. Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale [J]. Nanotechnology, 2000, 11: 148-153.
  • 3Woo-Park JEONG,Chang-Choi SOO,Cho HYUN,Woo-Lee DEUG.Portable nano probe for micro/nano mechanical scratching and measuring[J].Transactions of Nonferrous Metals Society of China,2011,21(A01):205-209. 被引量:1
  • 4TSURU T, SHIBUTANI Y. Atomistic simulation of elastic deformation and dislocation nucleation in AI under indentation-induced stress distribution [J]. Modelling Simul Mater Sci Eng, 2006, 14: 55-62.
  • 5LEUNG T P, LEE W B, LU X M. Diamond turning of silicon substrates in ductile-regime [J]. J Mater Process Technol, 1998, 73: 42-48.
  • 6DOYAMA M, NOZAKEI T, KOGURE Y. Cutting, compression and shear of silicon small single crystals [J]. Nucl Instrum Methods Phys Res Sect B, 1999, 153: 147-152.
  • 7KIM Y S, NA K H, CHOI S O. Atomic force microscopy-basednano-lithography for nano-patteming: A molecular dynamic study [J]. J Mater Process Technol, 2004, 155: 1847-1854.
  • 8CHENG K, LUO X, WARD R. Modeling and simulation of the tool wear in nanometric cutting [J]. Wear, 2003, 255: 1427-1432.
  • 9PEI Q X, LU C, LEE H P. Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations [J]. Nanoscale Res Lett, 2009, 4:444-451.
  • 10PEI Q X, LU C, LEE H P. Large scale molecular dynamics study of nanometfic machining of copper [J], Comput Mater Sci, 2007, 41: 177-185.

二级参考文献36

  • 1SCOTT O M,NICHOLAS M.The wetting and bonding of diamonds by copper-base binary alloys[J].J Mater Sci,1975,10:1833-1840.
  • 2POWELL B R,YOUNGBLOOD G E,HASSELMANN D P H,BENTSEN L D.Effect of thermal expansion mismatch on the thermal diffusivity of glass-Ni composites[J].J Am Cerm Soc,1990,63(9/10):581-586.
  • 3HASSELMANN D P H,JOHNSON L F,SYED R,TAYLOR M P,CHYUNGI K.Heat conduction characteristics of a carbon fiber-reinforced lithium-alumino-silicate glass-ceramic[J].J Mater Sci,1987,22:701-709.
  • 4SCHUBERT T,CIUPI-SKI -,ZIELI-SKI W,MICHALSKI A,WEIβG-RBER T,KIEBACK B.Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink application[J].Scripta Materialia,2008,58:263-266.
  • 5FLAQUER J,RíOS A,MARTIN-MEIZISO A,NOGALES S.Effect of diamond shapes and associated thermal boundary resistance on the thermal conductivity of diamond-based composites[J].Computational Materials Science,2007,41(2):156-163.
  • 6KLEINER S,KHALID F A,RUCH P W,BEFFORT O.Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminum[J].Scripta Materialia,2006,55:291-294.
  • 7HU Shao-chung,CHANG Kuen-liang,SUNG James.Ultrahigh pressure sintering of polycrystalline diamond cubes[C]// LI Zhi-hong,ZHAO Bo,YI Yun-lei,LIU Yue-lan.Proceedings of the 5th Zhengzhou International Super-Hard Materials & Related Products Conference.Zhengzhou:China Machine Press,2008:70-76.
  • 8WEBER L,TAVANGAR R.On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X(X=Cr,B) diamond composites[J].Scripta Materialia,2007,57:988-991.
  • 9DUNN M,TAYA M.The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces[J].J Apply Phys,1993,73:1711-1722.
  • 10САМСОНОВ Г В.Analysis of refractory compound[M].HUANG Jing-hua.Shanghai:Shanghai Science and Technology Press,1965:126-128.

共引文献17

同被引文献60

  • 1郭雅芳,高索文.分子动力学模拟裂纹扩展及相关尺寸行为[J].北京交通大学学报,2005,29(4):5-9. 被引量:8
  • 2赵艳红,李英骏,杨志安,张广财.带孔洞的金属拉伸的分子动力学[J].计算物理,2006,23(3):343-349. 被引量:14
  • 3陈玉华,王勇.基于SYS WELD的运行管道在役焊接热循环数值模拟[J].焊接学报,2007,28(1):85-88. 被引量:25
  • 4LI B, CAO H, YIN G. Mg(OH)2@reducedgraphene oxide composite for removal of dyes from water[J]. Journal of Materials Chemistry, 2011,21(36): 13765-13768.
  • 5SUIHKONEN R, NEVALAINEN K, ORELL 0, HONKANEN M, TANG L, ZHANG H, ZHANG Z, VUORINEN J. Performance of epoxy filled with nano- and micro-sized magnesium hydroxide[J]. Journal of Materials Science, 2012, 47(3): 1480-1488.
  • 6CAO H, ZHENG H, YIN J, LU Y, WU S, WU X, LI B. Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17362-17368.
  • 7SUPPAKARN N, JARUKUMJORN K. Mechanical properties and flammability of sisa1lPP composites: Effect of flame retardant type and content[J]. Composites Part B: Engineering, 2009, 40(7): 613-618.
  • 8AL-OWAIS A, EL-MOSSALAMY E, SHAH M, ARAFA H M. Fabrication of magnesium hydroxide nanoneedles[J]. Chemistry and Technology of Fuels and Oils, 2011, 47(2): 151-156.
  • 9SAIN M, PARK S H, SUHARA F, LAW S. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide[J]. Polymer Degradation and Stability, 2004, 83(2): 363-367.
  • 10LIU S P, YING J R, ZHOU X P, XlE X L, MAl Y W. Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA[J]. Composites Science and Technology, 2009, 69(11-12): 1873-1879.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部