摘要
Texture evolution in extruded and hot-rolled Al-Mg-Li aeronautical alloys during in-situ tension was investigated by using elec-tron backscattered diffraction (EBSD). A field emission scanning electron microscope (FE-SEM) and a MICROTEST-5000 tensile stage were used to carry out in-situ tension tests and observations. The crystallographic texture of the extruded sample changed from weak cube texture {001}〈100〉 to texture {018}〈081〉 during tension fracture. However, strong Brass {110}〈112〉 in the hot-rolled sample was modi-fied into a mixture texture component of Brass {110}〈112〉 and S {123}〈634〉 during tension fracture. Texture evolution in the two samples during tension can be explained by the rotation of grain orientation.
Texture evolution in extruded and hot-rolled Al-Mg-Li aeronautical alloys during in-situ tension was investigated by using elec-tron backscattered diffraction (EBSD). A field emission scanning electron microscope (FE-SEM) and a MICROTEST-5000 tensile stage were used to carry out in-situ tension tests and observations. The crystallographic texture of the extruded sample changed from weak cube texture {001}〈100〉 to texture {018}〈081〉 during tension fracture. However, strong Brass {110}〈112〉 in the hot-rolled sample was modi-fied into a mixture texture component of Brass {110}〈112〉 and S {123}〈634〉 during tension fracture. Texture evolution in the two samples during tension can be explained by the rotation of grain orientation.
基金
supported by the Innovation Fund of China Aerospace Science and Technology Corporation (2011)
the Research Fund of the State Key Laboratory of Solidification Processing (No.42-QP-009)
the 111 Project of China (No.B08040)