期刊文献+

电-力耦合场下导电弹性介质的表面失稳

Surface instability of a conductive elastic medium subjected to electro-mechanical coupling field
下载PDF
导出
摘要 文章利用线性摄动理论,对扩散调控的弹性固体表面在受到单向均匀远场应力和电场的作用下进行了研究;采用线性稳定性分析得到了临界失稳波长,得出了摄动增长率随扰动波数的变化曲线;在分析过程中,考虑了弹性应变能、表面能和静电能的共同作用。分析结果表明,表面能总是抑制表面失稳,弹性应变能促进表面失稳,而静电能有利于表面失稳。表面形态的演化是由于几种能量相互竞争导致的结果,最终趋于总自由能最小。通过机械应力和电应力调控的表面自组装可以生成周期性纳米结构,从而为纳电设备的制造提供模板。 By means of the linear perturbation theory, the diffusion-mediated surface instability of the elastic solid subjected to a uniaxial uniform far-field stress in an electric field is studied. The critical instability wavelength is obtained by using linear stability analysis. The curve of the perburbation growth rate versus the disturbance wavenumber is plotted. The elastic strain energy, the surface ener- gy and the electrostatic energy are taken into consideration. The results indicate that the surface ener- gy always stabilizes the solid surface, the elastic strain energy always promotes the instability and the electrostatic energy destabilizes the surface. The surface morphological evolution arises from the ener- gy competition which attempts to minimize the total free energy. The periodic nanostructures can be formed by the mechanical stress and the electric stress controlled surface self-assembly which is desira- ble for making the template for nanoelectronic devices.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第12期1662-1664,1668,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51177033) 合肥工业大学科学研究发展基金资助项目(2009HGXJ0038)
关键词 电-力耦合 表面失稳 自组装 表面扩散 摄动分析 electro mechanical coupling surface instability self-assembly surface diffusion pertur bation analysis
  • 相关文献

参考文献13

  • 1Asaro R J, Tiller W A. Interface morphology developmentduring stress corrosion cracking : part I[J]. Via surface dif-fusion Metall Trans, 1972,3: 1789—1796.
  • 2Srolovitz D J. On the stability of surfaces of stressed solids[J]. Acta Metall Mater,1989,37:621 —625.
  • 3Grinfeld M A. Instability of the separation boundary be-tween a non-hydrostatically stressed elastic body and a melt[J]. Sov Phys-Dokl,1986,31: 831—834.
  • 4Spencer B J, Voorhees P W, Davis S H. Morphological in-stability in epitaxially strained dislocation-free solid films[J].Phys Rev Lett,1991,67: 3696 — 3699.
  • 5Chiu C H. The self-assembly of uniform heteroepitaxialislands[J]. Appl Phys Lett,1999,75: 3473 - 3475.
  • 6Savina T V,Voorhees P W, Davis S H. The effect of surfacestress and wetting layers on morphological instability in epitaxi-ally strained films[J]. J Appl Phys,2004,96:3127—3133.
  • 7Du D X,Srolovitz D. Electrostatic field-induced surface in-stability[J]. Appl Phys Lett,2004,85: 4917—4919.
  • 8Schaffer E, Thurn-Albrecht T, Russell T P,et al. Electrical-ly induced structure formation and pattern transfer[J]. Na-ture,2000,403: 874一877.
  • 9Kim D,Lu W. Three-dimensional model of electrostaticallyinduced pattern formation in thin polymer films [J]. PhysRev B,2006,73: 035206.
  • 10Chiu C H, Poh C T,Huang Z. Morphological stability ofthe Stranski-Krastanow systems under an electric field[J], Appl Phys Lett,2006,88: 241906.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部