摘要
学习过线性不适定问题正则化以后,发现关于Bregman距离的线性收敛率的证明,是在古典假设的一个标准原条件下推导出来的.利用变分不等式,我们将在文章中讨论一阶收敛率的情况,即残差法、偏差原则的Tikhonov正则化.
Learning regularization of linear ill-posed problems later,finding out the proof of linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition.Using the method of variational inequalities,we will be discussing convergence rates of first order both for the case of Residual method and Tikhonov regularization with discrepancy principle.
出处
《太原师范学院学报(自然科学版)》
2012年第3期19-21,共3页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
正则化
变分不等式
TIKHONOV正则化
收敛率
regularization
variational inequalities
Tikhonov regularization
convergence rates