期刊文献+

变分不等式证明正则化的线性不适定问题

Regularization of Linear Ill-Posed Problems Proven by Variational Inequalities
下载PDF
导出
摘要 学习过线性不适定问题正则化以后,发现关于Bregman距离的线性收敛率的证明,是在古典假设的一个标准原条件下推导出来的.利用变分不等式,我们将在文章中讨论一阶收敛率的情况,即残差法、偏差原则的Tikhonov正则化. Learning regularization of linear ill-posed problems later,finding out the proof of linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition.Using the method of variational inequalities,we will be discussing convergence rates of first order both for the case of Residual method and Tikhonov regularization with discrepancy principle.
出处 《太原师范学院学报(自然科学版)》 2012年第3期19-21,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 正则化 变分不等式 TIKHONOV正则化 收敛率 regularization variational inequalities Tikhonov regularization convergence rates
  • 相关文献

参考文献4

  • 1Markus Grasmair,Otmar Scherzer, Markus Haltmeier. Necessary and sufficient conditions for linear convergence of l1-regu- larization[J]. Comm. Pure Appl. Math. ,2011,64(2) : 161-182.
  • 2Grasmair M,Haltmeier M,Scherzer O. Sparse regularization with lq penalty term[J]. Inverse Problems, 2008,24(5):587- 1 010.
  • 3Antman,Stauart, Holmes, et al. Applied mathematical scieuces[A]. Scherzer O, Grasmair M, Grossauer H, et al. Variational methods in imaging[G]. New York:Springer,2009.
  • 4Hofmann B, Kaltenbacher B, Poschl C, et al. A convergence rates result for Tikhonov regularization in Banaeh spaces with non-smooth operators[J]. Inverse Problems, 2007,23 (3) : 987-1010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部