期刊文献+

发音特征在维汉语音识别中的应用

Application of Articulatory Feature in Uygur and Mandar in Speech Recognition
下载PDF
导出
摘要 采用传统谱特征作为输入进行语音识别通常会受到声学环境差异的影响。为此,提出汉语和维语音素和音位的对应规则,并将这种规则应用于基于发音特征的语音识别系统。训练神经网络多层感知器,获取语音信号各类发音特征的后验概率,将其与美尔频率倒谱系数(MFCC)拼接后送入隐马尔科夫模型进行声学模型训练。将不同发音特征分别与传统MFCC特征进行组合并给出测试结果。实验结果表明,当汉语声带状况和送气发音特征与传统MFCC组合时,以及维语的发音方式和声带状况特征与MFCC组合之后,系统误识率较低。 Speech recognition based on traditional spectral feature is liable to be influenced by the acoustic conditions of the environment.Articulatory Feature(AF) is robust to such conditions.In this paper,the rules of phonetic mapping to AF of Mandarin and Uighur speech are derived.The neural networks are trained to obtain posterior probability of AF.The features are combined with Mel Frequency Cepstral Coefficient(MFCC) and are used to train the hidden Markov based acoustic model.Experimental results show that by combining the MFCC with the feature of voicing or aspiration in Mandarin,the feature of voicing or manner in Uighur,significant error reductions can be obtained.
作者 秦春香 黄浩
出处 《计算机工程》 CAS CSCD 2012年第23期177-180,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60965002) 新疆高校科研计划培育基金资助项目(XJEDU2008S15) 新疆大学博士科研启动基金资助项目(BS090143)
关键词 维汉语音识别 多层感知器 声学模型 美尔频率倒谱系数 特征组合 Uygur and Mandarin speech recognition Multilayer Perceptron(MLP) acoustic model Mel Frequency Cepstral Coefficient(MFCC) feature combination
  • 相关文献

参考文献7

  • 1Erier K,Freeman G.Using Articulatory Features for SpeechRecognition[C]//Proc.of IEEE Pacific Rim Conference onCommunications,Computers,and Signal Processing.Victoria,Canada:IEEE Press,1995.
  • 2Morris J,Fosler L E.Combining Phonetic Attributes UsingConditional Random Fields[C]//Proc.of the 9th InternationalConference on Spoken Language Processing.Pittsburgh,USA:[s.n.],2006.
  • 3张晴晴,潘接林,颜永红.基于发音特征的汉语普通话语音声学建模[J].声学学报,2010,35(2):254-260. 被引量:14
  • 4吴宗济.试论普通话语音的“区别特征”及其相互关系[J].语文研究,1987,22(4):10-13.
  • 5吾守尔.斯拉木,刘俊,王飞飞.基于DDBHMM的维吾尔语语音声学层识别系统研究[J].新疆大学学报(自然科学版),2010,27(4):381-386. 被引量:2
  • 6Eric C,Shi Yu,Zhou Jianlai,et al.Speech Lab in a Box:AMandarin Speech Toolbox to Jumpstart Speech RelatedResearch[C]//Proc.of the 8th European Conference on SpeechCommunication and Technology.Aalborg,Denmark:[s.n.],2001.
  • 7International Computer Science Institute.The ICSI QuicknetTools[EB/OL].(2010-11-21).http://www.icsi.berkeley.edu/Speech/qn.html.

二级参考文献24

  • 1钱跃良,林守勋,刘群,刘宏.2005年度863计划中文信息处理与智能人机接口技术评测回顾[J].中文信息学报,2006,20(B03):1-6. 被引量:4
  • 2吴宗济.普通话语句中的声调变化[J].中国语文,1982,6:439-449.
  • 3Kirchhoff K. Robust speech recognition using articulatory information. PhD thesis, University of Bielefeld, Germany, 1999.
  • 4Livescu K et al. Articulatory feature-based methods for acoustic and audio-visual speech recognition: JHU Summer Workshop Final Report. Technical report, Johns Hopkins University Center for Language and Speech Processing, 2007.
  • 5Cetin Oet al. An articulatory feature-based tandem approach and factored tandem observation modeling, in ICASSP, 2007; 4: 645-648, ISBN: 1-4244-0727-3.
  • 6Cetin O, Magimai-Doss M, Livescu K, Kantor A, King S, Bartels C, Frankel J. Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPs. in Proc. ASRU, 2007:36-41.
  • 7吴宗济.试论普通话语音的“区别特征”及其相互关系[J].中国语文,1982,(6).
  • 8Peter Ladefoged. A course in phonetics. Third Edition, P11-P13, University of California, Los Angeles, 1993.
  • 9Papcun J, Hochberg T R, Thomas F, Larouche J, Zacks J, Levy S. In ferring articulation and recognizing gestures from acoustics with a neural network trained on X-ray microbeam data. J. Acoust. Soc. Amer., 1992; 92(2): 688- 700.
  • 10Schroeter J, Sondhi M M. Techniques for estimating vocaltract shapes from the speech signal. IEEE Trans. Speech Audio Process, 1994(2): 133-150.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部