摘要
利用一类具有"小误差放大,大误差饱和"功能的非线性饱和函数,设计了非线性比例及线性微分加系统动力(NP-D+)控制算法.与传统的输出反馈控制算法相比,在忽略系统柔性影响的条件下,获得了谐波驱动系统更快的响应速度,并实现了对系统运动误差的有效补偿.应用李亚普诺夫稳定性理论证明了闭环系统的半全局渐近稳定性.数值仿真结果证明了所提的NP-D+输出反馈控制算法的有效性.
Based on a class of nonlinear saturated functions with the characteristics of "enlargement of small error and saturated in large error", a nonlinear proportional plus linear derivative and system dynamics (NP-D+) control algorithm is designed. Compared with traditional output feedback tracking control algorithms, the algorithm gives a faster response ignoring flexibility effects, and it can compensate for the kinematic error effectively. The semi-global asymptotic stability of the dosed-loop system is proved based on Lyapunov theory. Simulation examples verify the effectiveness of the proposed NP-D+ output feedback tracking control algorithm.
出处
《信息与控制》
CSCD
北大核心
2012年第6期730-734,740,共6页
Information and Control
关键词
谐波驱动
输出反馈
轨迹跟踪控制
非线性控制
半全局渐近稳定性
harmonic drive
output feedback
trajectory tracking control
nonlinear control
semi-global asymptotic stabil-ity