期刊文献+

基于视频的运动目标检测算法的比较与分析 被引量:4

Comparison and Analysis of Video-based Moving Object Detection Algorithms
下载PDF
导出
摘要 帧差法和背景差分法是目前常用的基于视频的运动目标检测方法。首先从帧差法和背景差分法中选取了几种具有代表性的算法;然后针对典型场景条件对这些方法进行了实验测试,并利用实验结果对算法进行了定性和定量的比较和分析。实验结果表明,ViBe算法、码本模型、混合高斯模型、自适应混合高斯模型、中值滤波和自适应背景建模具有较好的检测效果,但任何一种方法都有其局限性。 Frame subtraction and background subtraction methods are widely used in video-based moving object detection methods. First, several typical algorithms are selected from frame subtraction and background subtraction methods. Then, experiments are conducted for several typical background conditions, and the experimental results are shown for qualitative and quantitative comparison and performance judgement. Experimental results indicate that the detection results of ViBe algorithm, codebook model, mixture Gaussian model, adaptive mixture Gaussian model, median filter and adaptive background model are better than others, but any method has its limitation.
作者 王强 赵书斌
出处 《指挥控制与仿真》 2012年第6期36-40,83,共6页 Command Control & Simulation
基金 国防预研课题基金项目
关键词 运动目标检测 帧差法 背景差分法 moving object detection frame subtraction background subtraction
  • 相关文献

参考文献18

  • 1Collins R,Lipton A J,Kanade T,et al. A System forVideo Surveillance and Monitoring : Final Report [ R].Technical Report : CMU-RI-TR-00-12, Carnegie MelonUniversity, Pittsburgh, Peen, America, 2000.
  • 2Dubuisson M P,Lakshmanana S, Jain A K. Vehicle Seg-mentation and Classification Using Deformable Templates[J]. IEEE Transactions Pattern Analysis and MachineIntelligence, 1996,18(3) :293-308.
  • 3Stauffer C,Crimson W E L. Adaptive Background Mix-ture Models for Real-Time tracking [ C]. Proceeding ofthe IEEE International Conference on Computer Visionand Pattern Recognition, 1999(2) :246-252.
  • 4Ahmed Elgammal,Ramani Duraiswami, David Harwo-od,et al. Background and Foreground Modeling Using Non-parametric Kernel Density for Visual Surveillance [ C].Proceedings of the IEEE,2002 : 1151-1163.
  • 5Kim K Chalidabhongse T H, Harwood D. Real-time Fore-ground—Background Segmentation Using Codebook Model[J]. Real-Time Imaging, 2005,11(3) :172-185.
  • 6Alexei A Efros, Alexander C Berg, Greg Mori, et al.Recognizing Action at a Distance [ C] . International Con-ference on Computer Vision, 2003(2) :726-733.
  • 7You-shan Qu, Wei-Jian Tian, et al. Detecting SmallMoving Target in Image Sequences Using Optical FlowBased on the Discontinuous Frame Difference [ J]. Pro-ceedings of the SPIE-The International Society for OpticalEngineering, 2003 : 915-918.
  • 8Lipton A,Fujiyoshi H, Patil R. Moving Target Classifica-tion and Tracking from Real Time Video[ R]. In Proc:Workshop on Applications of Computer Vision, 1998.
  • 9何卫华,李平,文玉梅,叶波.复杂背景下基于图像融合的运动目标轮廓提取算法[J].计算机应用,2006,26(1):123-126. 被引量:16
  • 10Donovan H. Parks, Sidney S. Fels. Evaluation of Back-ground Subtraction Algorithm with Post-Processing [ C].In IEEE Fifth International Conference on Advanced Vid-eo & Signal Based Surveillance, 2008 : 192-199.

二级参考文献12

  • 1袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 2Gupte S, Masoud O, Martin R F K, et al. Detection and Classification of Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47.
  • 3STAUFFER C, GRIMSON W. Adaptive background mixture models for real-time tracking[A]. Proc IEEE Conference on Computer Vision and Pattern Recognition[C]. Fort Collins, Colorado, 1999. 246- 252.
  • 4HARTAOHU I, HARWOOD D, DAVIS L. W4: Real-time surveillance of people and their activities[J]. IEEE Trans Pattern Analysis and Ma2 chine Intelligence, 2000, 22(8) : 809 - 830,.
  • 5MEYER D, DENZLE J, NIEMANN H. Model based extraction of articulated objects in image sequences for gait analysis[A]. Proc IEEE Inter2 national Conference on Image Processing[C]. Santa Barbara, California, 1997.78 - 81.
  • 6LIPTON A, FUJIYOSHI H, PATIL R. Moving target classification and tracking from real-time video[A]. Proc IEEE Workshop on Application of Computer Vision[C]. Princeton, NJ, 1998.8 - 14.
  • 7ANDERSON C, BERT P, VANDER WG. Change detection and tracking using pyramids transformation techniques[A]. Proc SPIE Conference on intelligence Robots and Computer Vision[C]. Cambridge, MA, 1985,579.72-78.
  • 8DUBMISSION MP, JAIN AK. Contour extraction of moving objects in complex outdoor scenes[J]. Intematlonal Journal of Computer Vision, 1995, 14(1) : 83 - 105.
  • 9王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 10柴本成,柴国钟,姜献锋.一种新的自动阈值图像分割方法[J].机械,2003,30(4):34-35. 被引量:6

共引文献33

同被引文献31

  • 1胡君红,江浩洋,樊荣,张天序.一种基于C64x的多DSP实时图像处理系统[J].计算机工程,2006,32(11):268-270. 被引量:5
  • 2刘浩然,王冠.DSP环境下C代码的手工汇编优化[J].现代电子技术,2006,29(12):92-95. 被引量:5
  • 3赵春晖,潘泉,杨峰,等.视频图像运动目标分析[M].北京:国防丁业出版社,2011.
  • 4You-shan Qu, Wei-Jian Tian, et al. Detecting Small Mov- ing Target in Image Sequences Using Optical Flow Based on the Discontinuous Frame Difference[ J]. Proceedings of the SHE-The International Society for Optical Engineering, 2003 : 915-918.
  • 5Texas Instruments Co. TMS320C6000 Optimizing Compiler v6. 0 Beta [ M/OL ]. ( 2005-07 ) [ 2009-01-11 ] http://focus.ti, com/lit/ug/sprus 198n/spru 187n.pdf.
  • 6TMS320C6000 Optimizing C Compiler User's Guide [ M ]. Texas Instruments Incorporated, 2001.
  • 7Donovan H. Parks, Sidney S. Fels. Evaluation of Back- ground Subtraction Algorithm with Post-Processing[ C]// IEEE Fifth International Conference on Advanced Video & Signal Based Surveillance, 2008: 192-199.
  • 8Lipton A, Fujiyoshi H, Patil R. Moving Target Classifica- tion and Tracking from Real Time Video [C ] // Proceedings of IEEE Workshop Applications of Computer Vision, Los Alamitos, CA, 1998:8-14.
  • 9Papenberg N, Bruhn A, Brox T, et al. Highly Accurate Optic Flow Computation with Theoretically Justified War- ping[J]. International Journal of Computer Vision, 2006, 67(2) :141-158.
  • 10Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking [ C ] //Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Fort Collins, USA, 1999:246-252.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部