期刊文献+

基础资产不可交易条件下欧式期权的消费效用无差别定价 被引量:1

Consumption Utility-based Indifference Pricing of European Options on Nontradable Underlying Assets
下载PDF
导出
摘要 基于消费效用无差别准则,讨论非完备市场下欧式期权定价问题.在完备市场下,验证了关于一般效用函数的效用无差别定价等同于经典Black-Scholes期权定价.在非完备市场下,通过假设投资者具有CARA效用,发现期权消费效用无差别价格会随期权标的资产价格波动率增加或期限延长反而降低.风险态度只有与期权非系统风险相结合才对期权消费效用无差别价格产生影响,期权的非系统风险越小,风险态度对期权效用无差别价格影响越弱,当非系统风险为零时,投资者风险态度不对期权价格产生影响. This paper studied the pricing problem of European option under an incomplete market on the basis of consumption utility indifference.The conclusions of Black-Scholes models were recovered even for a general utility function.In contrast to complete markets,it is found that the utility indifference price for CARA utility may decrease if the volatility of the underlying asset or the lifetime of the option increases under the incomplete market.The risk attitude of an investor has effects on option prices only if there is idiosyncratic risk exposed in the option.The smaller the idiosyncratic risk exposed in the option,the weaker the effect of the risk attitude on the consumption utility indifference price.Especially,if there is no idiosyncratic risk exposed in the option,the risk attitude will make no impact on option prices.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期89-93,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(70971037 71171078) 高等学校博士学科点专项科研基金资助项目(20100161110022) 湖南省研究生科研创新项目(CX2010B138 CX2009B064)
关键词 消费效用无差别定价 非完备市场 非系统风险 最优控制 控制理论 consumption utility-based indifference pricing incomplete market idiosyncratic risk optimal control control theory
  • 相关文献

参考文献18

  • 1BLACK F, SCHOLES M. The pricing of options and corpo- rate liabilities [J]. The Journal of Political Economy, 1973, 81(3) :637-654.
  • 2COX J C, ROSS S. The valuation of options for alternative stochastic processes [J]. Journal of Financial Economy, 1976, 3(1/2) : 229-263.
  • 3HARRISON J M, KREPS D. Martingales and arbitrage in multi period securities markets [J]. Journal of Economic The- ory, 1979, 20(3): 381-408.
  • 4MYERS S C, MAJD S. Abandonment value and project life [J]. Advances in Futures and Options Research, 1990, 22 (4):1- 21.
  • 5HODGES S A. Neuberger optimal replication of contingent claims under transaction costs [J]. Review of Futures Mar kets, 1989(8) :222-239.
  • 6TEPLA L. Optimal hedging and valuation of non traded assets [J]. European Finance Review, 2000, 4:221-251.
  • 7HENDERSON V, D HOBSON. Real options with constant relative risk aversion [J]. Journal of Economic Dynamics and Control, 2002, 27:329-355.
  • 8KLEIN M. Comment on "investment timing under incomplete information" [J]. Mathematics of Operations Research, 2009, 34(2) : 249-254.
  • 9YANG Z J, YANG J Q. Consumption utility-based pricing and timing of the option to invest with partial information[M]. Hunan University, 2010.
  • 10EWALD C, YANG Z J. Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk [J]. Mathematical Methods of Oper- ations Research, 2008, 68(1): 97-123.

同被引文献11

  • 1陈金龙.实物期权定价与风险对冲方法研究(英文)[J].运筹学学报,2005,9(1):82-88. 被引量:2
  • 2Biagini F, Cretarola A. Quadratic Hedging Methods for Defaultable Claims[J]. Applied Mathematics and Optimization, 2007, 56 (3): 425-443.
  • 3Schweizer M. Variance optimal hedging in discrete time[J]. Mathematics of Operations Re- search, 1995, 20(1): 1-32.
  • 4Schweizer M. Approximation pricing and the variance optimal martingale measure[J]. The Annals of Probability, 1996, 24 (1): 206-236.
  • 5Gourieroux C, LAURENT H P, PHAM H. Mean variance hedging and numeraire[J]. Math- ematical Finance, 1998, 8 (3): 179-200.
  • 6Pham H. On quadratic hedging in continuous time [J] . Mathematical Methods of Operations Research, 2000, 51(2): 315-339.
  • 7Rheinl'nder T, Schweizer M. On L2 projections on a space of stochastic integrals[J]. Annals of Probability, 1997, 25 (4): 1810-1831.
  • 8潘小军,林武忠.不可交易标的资产衍生证券定价问题[J].华东师范大学学报,2009(3):19-24.
  • 9Duffle D, Richardson H. Mean2variance hedging in continuous time[J]. The Annals of Prob- ability, 1991, 1(1): 1-15.
  • 10Protter P. Stochastic Integration and Differential Equations[M]. New York: Springer Verlag, 2004.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部