期刊文献+

具有判断值支付的合作对策的M-S值

M-S value for cooperative games with judgement worth
下载PDF
导出
摘要 针对联盟支付以判断值给出的n人合作对策问题,提出了一个基于1-9判断标度的合作对策Multiplicative-Shapley值求解公式.首先给出了判断值平均支付函数的定义,研究了判断值的一致性及其调整方法.其次通过定义相应的特征函数,给出了具有判断值支付的n人合作对策的优超、伪凸、伪核心、单位元等系列概念,并由此提出一个满足3条公理的Multiplicative-Shapley值公式.最后通过一个算例,验证了Multiplicative-Shapley值公式的可行性和有效性. With respect to cooperative n-person games with judgement worth, the Multiplicative-Shapley is proposed based on the 1-9 judgement scale. Firstly, the average payoff function is defined, and two types of consistent and their adjustment are intro- duced simultaneously. Secondly, some concepts of cooperative n-person games, such as domination, pseudoconvex, Multiplicative-Shapley value and unit element, are defined based on the corresponding characteristic function, and then the Multiplicative-Shapley value is proposed according to three axioms. Finally, a numeral example is illustrated to show the feasibility and availability of the Multiplicative-Shapley value.
作者 林健 张强
出处 《运筹学学报》 CSCD 北大核心 2012年第4期41-50,共10页 Operations Research Transactions
基金 国家自然科学基金资助项目(Nos.71071018 71201089) 高等学校博士学科点专项科研基金项目(No.20111101110036)
关键词 合作对策 判断值支付 Multiplicative—Shapley值 单位元 cooperative games, judgement worth, Multiplicative-Shapley value, unit element
  • 相关文献

参考文献12

二级参考文献39

  • 1黄礼健,吴祈宗,张强.联盟收益值为区间数的n人合作博弈的解[J].中国管理科学,2006,14(z1):140-143. 被引量:2
  • 2陈雯,张强.模糊合作对策的Shapley值[J].管理科学学报,2006,9(5):50-55. 被引量:45
  • 3Myerson R B. Graphs and cooperation in games[J].Mathematits of Operations Research, 1977,2(3) :225 - 229.
  • 4Peleg B. On the reduced game property and its converse[J].International Journal of Game Theory, 1989,15(3) : 187 - 200.
  • 5Pulido M A, Sanchez S J. Characterization of the core in games with restricted cooperation[J].European Journal of Operational Research ,2006,175(2) :860 - 869.
  • 6Faigle U, Kern W. The Shapley value for cooperative games under precedence constraints[J]. International Journal of Game Theory,1992,21(3):249 - 266.
  • 7Gilles R P, Owen G. Cooperative games and disjunctive per mission structures[M]. Tilburg: Tilburg University,1999.
  • 8Gilles R P, Owen G, van den Brink R. Games with permission structures: the conjunctive approach[J]. International Journal of Game Theory ,1991,20(3) :277 - 293.
  • 9Bilbao J M, Edelman P H. The Shapley value on convex geometries[J]. Discrete Applied Mathematics, 2000,103( 1 - 3) : 33 - 40.
  • 10Bilbao J M, Ordonez M. Axiomatizations of the Shapley value for games on augmenting systems[J]. European Journal of Operational Research, 2009,196(3) :1008 - 1014.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部