摘要
常数变易法是求解一阶线性微分方程的有效方法,但在求解某些微分方程时其过程比较繁琐。为了简化求解运算过程,给出了解一阶线性微分方程y′+p(x)y=q(x)的一种新思路,即将常数变易法公式y=C(x)e-∫p(x)dx设为y=e-∫p(x)dx(u(x)+C),这里u(x)是满足u′(x)e-∫p(x)dx=q(x)的待定函数,C为任意常数。
Constant variation is an effective method for linear differential equation of the iirst-order. However, in order to simplify the solving process,a new solution for a linear differential equations y' +p (x)y=q (x) is presented. That is, take y=C(x)e-fP(x)dx by y=e-fP(x)dx(u(x)+C), where u(x) satisfies and C is arbitrary constant.
出处
《商洛学院学报》
2012年第6期7-8,共2页
Journal of Shangluo University
基金
陕西省教育厅教学改革研究项目(11BY64)
商洛学院科研基金项目(09SKY039)
关键词
一阶线性微分方程
常数变易法
通解
linear differential equation of the first-order
constant variation
general solution