期刊文献+

温度作用下钢柱屈曲性能分析 被引量:1

Analysis on buckling performance of steel column under action temperature
下载PDF
导出
摘要 为了讨论两端简支钢柱在温度荷载作用下的弹性稳定性,考虑了温度沿钢柱截面非均匀分布的影响,基于构件的非线性位移应变关系,利用能量原理推导了钢柱的非线性平衡方程及屈曲方程,给出了计算临界屈曲温度荷载的方法.由分析结果可知,温度变化对钢柱的稳定性影响很大,当钢柱长细比较大时,即使温度变化值较小也能引起钢柱的屈曲;当钢柱温度变化沿截面均匀分布时,利用提出方法所求得的临界屈曲温度荷载与经典欧拉方法一致;当柱截面平均温度变化为零时,沿截面的不均匀温度分布不会引起钢柱的屈曲.温度沿截面的不均匀分布对于钢柱的稳定性是有利的,而且随着构件长细比的增大,沿截面温度不均匀分布对钢柱稳定性的有利作用增强.有限元验证结果说明所提出的方法可用于温度作用下钢柱屈曲性能的分析. In order to discuss the elastic stability of a steel column with two simple supported ends under the action of temperature load,the influence of non-uniform distribution of temperature along the cross section of steel column was considered,and the energy principle was used to derive the nonlinear equilibrium equations and buckling equations for steel column based on the nonlinear displacement-strain relationship for components.In addition,a calculating method for the critical buckling temperature load was proposed.The analysis results show that the temperature change has significant effect on the stability of steel column.When the slenderness ratio of steel column is larger,small change in temperature can also induce the buckling of steel column.When the temperature change distributes uniformly along the cross section of steel column,the critical buckling temperature load obtained with the proposed method coincides with that attained with the classical Euler method.When the average temperature change along the cross section of steel column is zero,the non-uniform distribution of temperature along the cross section will not cause the buckling of steel column.The non-uniform distribution of temperature along the cross section is beneficial for the stability of steel column.Moreover,with increasing the slenderness ratio of components,the advantageous effect of non-uniform distribution of temperature along the cross section on the stability of steel column gets enhanced.The results of finite element analysis verify that the proposed method can be used for the analysis on buckling performance of steel column under temperature action.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2012年第6期691-696,共6页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(50908044) 江苏省六大人才高峰资助项目(A类)(2007162) 东南大学优秀博士学位论文基金资助项目(YBJJ0817)
关键词 钢柱 屈曲 温度荷载 弹性 虚功原理 长细比 非线性 临界温度 steel column buckling temperature load elasticity virtual work principle slenderness ratio nonlinearity critical temperature
  • 相关文献

参考文献12

  • 1Timoshenko S, Gere J M. Theory of elastic stability [ M ]. New York: McGraw-Hill, 1961.
  • 2Simitses G J. An introduction to the elastic stability of structures E M]. New Jersey :Englewood Cliffs, 1976.
  • 3Culver C. Steel column buckling under thermal gradi- ents [ J]. Journal of Structural Division-ASCE, 1972, 92(8) :1853 - 1865.
  • 4Ossenbruggen P, Aggarwal V, Culver C. Buckling of steel columns at evaluated temperature [ J ]. Journal of the Structural Division-ASCE, 1973,99 ( 4 ) : 715 - 726.
  • 5Ossenbruggen P, Aggarwal V, Culver C. Steel column failure under thermal gradients by member [ J ]. Jour- nal of the Structural Division-ASCE, 1973,99 ( 4 ) : 727 - 739.
  • 6Talarnona D, Franssen J M, Scbleich J B, et al. Stabili- ty of steel columns in case of fire: numerical modeling I J ]. Journal of Structural Engineering, 1997,123 (6) : 713 -720.
  • 7Li S R, Song X. Large thermal deflections of Timo- shenko beams under transversely non-uniform tempera- ture rise [ J ]. Mechanics Research Communications, 2006,33( 1 ) :84 -92.
  • 8Song X, Li S R. Thermal buckling and post-buckling of pinned-fixed Euler-Bemoulli beams on an elastic foundation J ]. Mechanics Research Communica- tions ,2007,34 (2) : 164 - 171.
  • 9Tan K H, Yuan W F. Buckling of elastically restrained steel columns under longitudinal non-uniform tempera- ture distribution I J ]. Journal of Construction Steel Re- search,2008,64( 1 ) :51 -61.
  • 10CAI JianGuo,FENG Jian,CHEN Yao,HUANG LiFeng.In-plane elastic stability of fixed parabolic shallow arches[J].Science China(Technological Sciences),2009,52(3):596-602. 被引量:8

二级参考文献20

  • 1Wei X,Li J,Li X Z, et al.In-plane secondary buckling behavior of elastic arches. Eng Mech . 2007
  • 2Moon J,Yoon K Y,Lee T H, et al.In-plane elastic buckling of pin-ended shallow parabolic arches. Eng Strut . 2007
  • 3Bradford M A,Wang T,Pi Y L, et al.In-plane stability of parabolic arches with horizontal spring supports. I: Theory. Journal of the World Aquaculture Society . 2007
  • 4Wang T,Bradford M A,Gilbert R I, et al.In-plane stability of para- bolic arches with horizontal spring supports. II: Experiments. Journal of the World Aquaculture Society . 2007
  • 5Noor,A K,Peters,J M.Mixed models and reduced-selective integration displacement models for nonlinear analysis of curved beams. International Journal for Numerical Methods in Engineering . 1981
  • 6Stolarski,H.,Belytschko,T.Membrane locking and reduced integration for curved elements. Journal of Applied Mechanics . 1982
  • 7Elias Z M,Chen K L.Nonlinear shallow curved-beam finite element. Journal of Engineering . 1988
  • 8Wen K,Suhendro B.Nonlinear curved-beam element for arch structures. Journal of Structural Engineering . 1991
  • 9Pi Y. L,Trahair N S.Non-lineart buckling and postbuckling of elastic arches. Engineering Structures . 1998
  • 10Yong-Lin Pi and Mark A. Bradford.In-plane strength and design of fixed steel I-section arches. Engineering Structures . 2004

共引文献293

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部