期刊文献+

基于三维MC-SN耦合方法的PWR压力容器快中子注量计算基准分析

Fast neutron flux calculation benchmark analysis of PWR pressure vessel based on 3D MC-SN coupled method
下载PDF
导出
摘要 蒙特卡罗(MC)-离散纵标(SN)耦合方法是解决同时具有复杂几何和深穿透特点的核装置屏蔽问题的有效方法。本文首次将三维MC-SN耦合方法应用于压水堆屏蔽计算。针对NUREG/CR-6115压水堆基准模型,选取热屏蔽内表面为公共交界面,将其分为几何复杂的MC模拟区和具有深穿透特点的SN模拟区。三维MC程序用于精确描述堆芯到热屏蔽精细模型,并记录穿过热屏蔽内表面的中子径迹信息。接口程序将中子径迹转换为SN计算所需的边界源,提供给三维SN程序进行热屏蔽到压力容器的计算。计算结果包括压力容器内表面、1/4壁厚处及焊缝处快中子注量(E>1.0 MeV)圆周方向分布。三维耦合方法计算结果与基准报告提供的MCNP、DORT结果符合良好,验证了该方法处理圆柱坐标系屏蔽问题的有效性和程序使用的正确性。 The Monte Carlo (MC)-discrete ordinates (SN) coupled method is an efficient approach to solve shielding calculations of nuclear device with complex geometries and deep penetration. The 3D MC-SN coupled method has been used for PWR shielding calculation for the first time. According to characteristics of NUREG/CR-6115 PWR model, the thermal shield is specified as the common surface to link the Monte Carlo complex geometrical model and the deep penetration SN model. 3D Monte Carlo code isemployed to accurately simulate the structure from core to thermal shield. The neutron tracks crossing the thermal shield inner surface are recorded by MC code. The SN boundary source is generated by the interface program and used by the 3D SN code to treat the calculation from thermal shield to pressure vessel. The calculation results include the circular distributions of fast neutron flux at pressure vessel inner wall, pressure vessel T/4 and lower weld locations. The calculation results are performed with comparison to MCNP and DORT solutions of benchmark report and satisfactory agreements are obtained. The validity of the method and the correctness of the programs are proved.
出处 《核科学与工程》 CSCD 北大核心 2012年第4期295-300,共6页 Nuclear Science and Engineering
基金 新世纪优秀人才支持计划(NCET-11-0631) 科技部"973"ITER国内配套重点项目(2009GB109003) 中央高校基本科研业务费专项基金资助(10ZG08)
关键词 蒙特卡罗 离散纵标 耦合 基准 快中子注量 Monte Carlo discrete ordinates coupled benchmark fast neutron flux
  • 相关文献

参考文献4

二级参考文献38

  • 1[1]Peplow D E. Direction cosines and polarization vectors for Monte Carlo photo scattering [J]. Nucl Sci and Eng, 1999, 131: 132-136.
  • 2[2]Mclaughlin H E, Hendricks J S. Performance of scientific computing platforms with MCNP4B [J]. Nucl Sci and Eng, 1999, 129: 311-319.
  • 3[3]Wngner J C, Haghighat A. Automated variance reduction of monte carlo shielding calculations using discrete ordinates adjoint function [J]. Nucl Sci and Eng, 1998, 128: 186-208.
  • 4[4]Serov I V, John T M, Hoogenboom J E. A midway forward-adjoint coupling method for neutron and photo Monte Carlo transport [J]. Nucl Sci and Eng, 1999, 133: 55-72.
  • 5CAREW J F, HU K, ARONSON A, et al. PWR and BWR pressure vessel fluence calculation benchmark problems and solutions[R]. Washington: U. S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, 2001.
  • 6杨玉中.基于蒙特卡罗输运技术的压力容器及辐照监督管中子注量计算方法研究及应用[C]//第十届全国核反应堆数值计算和粒子输运学术会议暨2004年度反应堆物理会议文集.秦山,2004:535-543.
  • 7RHOADES W A, CHILDS R L. TORT-DORT two- and three-dimensional discrete ordinates transport version 2.8.14[R]. USA: Oak Ridge National Laboratory, 1994.
  • 8BRIESMEISTER J F. MCNP4C Monte Carlo Nparticle transport code[R]. USA: Los Alamos National Laboratory, 2000.
  • 9U.S. Nuclear Regulatory Commission. NUREG/CR-6115, BNL-NUREG-52395, PWR and BWR pressure vessel fluence calculation benchmark problems and solutions [R]. USA: Brookhaven National Laboratory, 2001.
  • 10WILLIAMS J G, VEHAR D W, RUDDY F H, et al. Impact of the ENDF/B-VI cross sections on the RPV fluence determination[R]. West Conshohoken: American Society for Testing and Materials, 2000.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部