期刊文献+

平面远场受拉孔洞塑性区半径应变梯度解 被引量:2

Strain Gradient Plasticity Solutions of Plastic Region Radius for a Borehole Problem
下载PDF
导出
摘要 在应变梯度理论框架下,分别采用双剪屈服准则和Tresca屈服准则对弹塑性平面均匀受拉孔洞问题进行了分析,得到了相应塑性区半径计算公式,并与基于Mises屈服准则得到的结果进行了对比。研究发现,基于双剪屈服准则得到的解偏小,基于Tresca准则得到的解偏大,基于Mises屈服准则得到的解大小介于二者之间。此外,研究结果还表明,塑性区半径随材料硬化指数的增大而增大,且当孔洞的特征尺寸在微米量级时,基于应变梯度理论得到的结果与经典塑性解有显著差异。 In the framework of the strain gradient plasticity theory ,an analysis was conducted for the pro-blem of an elasto-plastic plane strain body containing a circular hole and subjected to uniform far field stress based on the twin-shear stress yield criterion and the Tresca yield criterion. The expressions of plastic region radius were derived and compared with that based on the Mises yield criterion. It was shown that the plastic region radius increases with the increasing material hardening exponent. The solu- tions based on the twin-shear stress yield criterion and the Tresca yield criterion are smaller and larger than that derived from the Mises yield criterion respectively. It was also indicated that the difference be-tween strain gradient solution and classical solution is significant as the borehole size on the order of mi-cron.
作者 谢翔 张永强
出处 《力学季刊》 CSCD 北大核心 2012年第4期628-634,共7页 Chinese Quarterly of Mechanics
关键词 Tresca屈服准则 双剪屈服准则 应变梯度塑性 孔洞 Tresca yield criterion twin-shear stress yield criterion strain gradient plasticity borehole
  • 相关文献

参考文献11

  • 1MENDELSON A. Plasticity: Theory and Application[M]. New York: Macmillan, 1968.
  • 2冯西桥,刘信声.拉压性能不同对厚壁圆筒安定性的影响[J].力学与实践,1995,17(5):28-30. 被引量:21
  • 3YU M H. Twin shear stress yield criterion[J]. International Journal of Mechanical Sciences, 1983,25(1) :71 - 74.
  • 4庄锦华.应用双剪应力屈服准则进行弹塑性分析[J].天津轻工业学院学报,1990(2):46-55. 被引量:4
  • 5黄文彬,曾国平.应用双剪应力屈服准则求解某些塑性力学问题[J].力学学报,1989,21(2):249-256. 被引量:34
  • 6ZHU H T, ZBIB H M, AIFANTIS E C. Strain gradients and continuum modeling of size effect in metal matrix composites[J]. Acta Mechanica,1997,121(1):165- 176.
  • 7GAO X L. Analytical solution of a borehole problem using strain gradient plasticity[J]. Journal of Engineering Materials and Technology, 2002,124:365- 370.
  • 8HILL R. The Mathematical Theory of Plasticity[M]. Oxford: Clarendon Press, 1950:106- 113.
  • 9MUHLHAUS H B, AIFANTIS E C. A variational principle for gradient plasticity[J]. International Journal of Solids and Structures, 1991, 28(7) :845- 857.
  • 10俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992..

二级参考文献19

  • 1冯西桥,刘信声.影响弹塑性结构安定性的各种因素[J].力学进展,1993,23(2):214-222. 被引量:11
  • 2俞茂--,中国科学.A,1985年,12期
  • 3王仁,塑性力学引论,1982年
  • 4曾国平,北京农业工程大学学报,1988年,8卷,1期,98页
  • 5黄文彬,力学与实践,1987年
  • 6俞茂宏,岩土工程学报,1994年,16卷,2期
  • 7张学言,岩土塑性力学,1993年
  • 8俞茂宏,西安交通大学学报,1992年,26卷,2期
  • 9俞茂宏,西安交通大学学术专著丛书,1992年
  • 10俞茂宏,Mechanical Behaviour of Materials.6,1991年

共引文献197

同被引文献19

  • 1王承强,郑长良.Ⅰ型和Ⅱ型Dugdale模型解析元列式及其半解析有限元法[J].工程力学,2005,22(6):37-40. 被引量:3
  • 2MA G W,HAO H.Unified plastic limit analyses of circular plates under arbitrary load[J] .J of Applied Mech,1999.66(2):568-570.
  • 3Mendelson A.Plasticity:Theory and Application[M] .New York:Macmillan,1968.
  • 4Drucker D C.Plasticity theory,strength-differential(SD)phenomenon,and volume expansion in metals and plastics[J] .Metallurgical Transactions,1973.4(3):667-673.
  • 5ZHU H T,ZBIB H M,AIFANTIS E C.Strain gradients and continuum modeling of size effect in metal matrix composites[J] .Acta Mechanica,1997.121(1):165-176.
  • 6GAO X L.Analytical solution of a borehole problem using strain gradient plasticity[J] .Journal of Engineering Materials and Technology,2002.124:365-370.
  • 7XIE Xiang,WANG Li-zhong,ZHANG Yong-qiang.Unified solution of a borehole problem with size effect[J] .Acta Mechanica,2013,DOI 10.1007/s00707-013-1022-z.
  • 8HILL R.The mathematical theory of plasticity[M] .Oxford:Clarendon Press,1950:106-113.
  • 9张永强,赵均海,宋莉.用双剪强度理论对具有圆孔的大薄板材料的极限分析[J].塑性工程学报,1999,6(2):53-57. 被引量:3
  • 10王维娟,赵乃騄.裂尖塑性区的分析与测算[J].石油机械,1990,18(10):16-20. 被引量:4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部