期刊文献+

能源模块磁开关工作特性分析 被引量:4

Working Characteristics Analysis of Magnetic Switch in Energy Module
下载PDF
导出
摘要 为保证气体开关可靠触发和其他器件的绝缘安全,神光III能源模块的主放电回路采用磁开关来隔离触发电压,能源模块选择铁基纳米晶环形磁芯作为磁开关。为验证磁开关在能源模块中的工作特性,建立了与工况类似的基于电容放电型测试平台,获得高、低铁基纳米晶材料在一定磁化速率、磁感应增量下的平均相对脉冲磁导率和伏秒积,理论推导了磁开关在能源模块中的平均非饱和电感、饱和电感和饱和时间。理论计算和实测结果表明,能源模块中磁开关的平均非饱和电感约为14 H、饱和电感约为0.6 H、饱和时间约为0.70 s,满足工程设计要求。低剩磁铁基纳米晶材料较高剩磁铁基纳米晶材料更适合作为能源模块磁开关的磁芯。 To keep the spark gap switch triggered reliably and protect other components in SG-Ⅲ energy module, it requires a magnetic switch to isolate the trigger voltage in main discharge circuit. Fe-based nanocrystalline was chosen as the material of the magnetic switch in energy module. In order to verify the performance of the magnetic switch, a test stand was built to determine the pulse permeability and volt-second product under a certain pulse width and incremental flux density. The measured parameters of unsaturated inductance (14 μH), saturated inductance (0.6 μH) and saturation time (0.70μs) were in agreement with the calculation ones based on the results from the test stand. The characteristic parameters of the magnetic switch satisfy the engineering requirements of energy module. Fe-based nanocrystalline with low residual flux will be more suitable than that with high residual flux in this situation.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第36期142-148,2,共7页 Proceedings of the CSEE
关键词 能源模块 气体开关 磁开关 铁基纳米晶 磁化曲线 energy module spark gap switch magnetic switch Fe-based nanocrystalline magnetization curve
  • 相关文献

参考文献20

二级参考文献118

共引文献113

同被引文献50

  • 1李兴文,贾申利,张博雅.气体开关电弧物性参数计算及特性仿真研究与应用[J].高电压技术,2020,46(3):757-771. 被引量:34
  • 2丁臻捷,苏建仓,丁永忠,俞建国.环形磁芯快脉冲动态参数测量方法[J].强激光与粒子束,2004,16(10):1345-1348. 被引量:14
  • 3郭良福,李黎,赖贵友,林福昌,陈德怀,力一峥,李冬梅,栾永平.石墨型高能两电极气体开关[J].强激光与粒子束,2010,22(12):3034-3038. 被引量:3
  • 4纪松,钱坤明,谭锁奎,张延松.基于Hopkinson效应的计算机控制软磁材料居里温度测量仪的研制[J].磁性材料及器件,2005,36(4):34-37. 被引量:1
  • 5Annakkage U D, McLaren P G, Jayasinghe D R P, et al. A current transformer model based on the jiles- atherton theory of ferromagnetic hysteresis[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 57-61.
  • 6Jacek Izydorczyk. A new algorithm for extraction of parameters of jiles and Atherton hysteresis model[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3132-3134.
  • 7Themistoklis D Kefalas, Antonios G Kladas. Harmonic impact on distribution transformer no-load loss[J].IEEE Transactions on Industrial Electronics, 2010, 57(1): 193-200.
  • 8Jiles David C, Atherton David L. Theory of ferro- magnetic hysteresis[J]. Journal of Applied Physics, 1984, 55(6): 2115-2120.
  • 9Garikepati P, Chang T T, Jiles D C. Theory of ferromagnetic hysteresis: evaluation of stress from hysteresis curves[J]. IEEE Transactions on Magnetics, 1988, 24(6): 2922-2924.
  • 10Jiles D C. Frequency dependence of hysteresis curves in conducting magnetic materials[J]. Journal of Applied Physics, 1994, 76(10): 5849-5855.

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部