期刊文献+

一类Dirichlet问题的多解存在性

Existence of Multiple Solutions for a Class of Dirichlet Problem
下载PDF
导出
摘要 利用H01(Ω)空间分解以及亏格和形变引理给出了半线性椭圆方程-Δ=g(x,μ)的Dirichlet问题无穷多解的存在性定理. By ways of the orthogonal decomposition on H_0^1 (Ω) ,genus and the Deformation Lemma, the author has obtained infinitely many solutions for a class of semilinear elliptic equations- △ u = g(x ,μ) .
作者 王雄瑞
出处 《大学数学》 2012年第6期63-66,共4页 College Mathematics
基金 四川省教育厅重点项目(11ZA172) 四川省科技厅应用基金项目(2011JYZ010)
关键词 DIRICHLET问题 形变引理 亏格 Dirichlet problem deformation lemma genus
  • 相关文献

参考文献8

  • 1Tang Chunlei, Gao Qiju. Elliptic resonant problems at highe reigenvalues with an unbounded nonlinear term [J]. Journal of Differential Equations, 1988 (146) : 56 -- 66.
  • 2Wu Xingping, Tang Chunlei. Some existence theorems for elliptic resonant problems [J]. J. Math. Anal. Appl. , 2001(264) :133--146.
  • 3Teng Kaimin,. Wu Xian. Multiplicity results for resonant elliptic problems with discontinuous nonlinearities[J]. Nonlinear semilinear Anal. , 2008,68(6) : 1652-- 1667.
  • 4Rabinowitz P H . Minimax methods in critical point theory with applications to differential equations [J]. The United States of America: Amer. Math. Soc. ,1986.
  • 5LIU Shibo. Remarks on multiple solutions for elliptic resonant problem [J]. J. Math. Anal. Appl. ,2007, 336 (1) : 498--505.
  • 6饶若峰.具临界指数椭圆方程-Δu=λ_κu+|u|^(2^*-2)u+f(x,u)非平凡多解存在性[J].数学年刊(A辑),2005,26(6):749-754. 被引量:12
  • 7Jiang Meiyue. Remarks on the resonant elliptic problem [J]. Nonlinear Anal. ,2003,53(7--8):1193--1207.
  • 8Goncalves J V A, Miyagaki O H. Multipl enontrivial solutions of semilinear strongly resonant elliptic equations[J]. NonlinearAnal. ,1992,19(1) ..43--52.

二级参考文献16

  • 1饶若峰.涉及第一特征值和临界指数的一类椭圆方程[J].数学进展,2004,33(6):703-711. 被引量:9
  • 2朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 3Iannacci,R.& Nkashama,M.N.,Nonlinear two point boundary value problem at resonance without Landesman-Lazer condition[J].Proc.Amer.Math.Soc.,10(1989),943-952.
  • 4Tang Chunlei,Solvability for two-point boundary value problems[J].J.Math.Anal.Appl.,216(1997),368-374.
  • 5Halidias,N.,Elliptic problems with nonmonotone discontinuities at resonance[J].Abstract Anal.Appl.,7:9(2002),497-507.
  • 6Brezis,H.& Nirenberg,L.,Positive solutions of non-linear elliptic equations involving critical Sobolev exponents[J].Comm.Pure Appl.Math.,36(1983),437-477.
  • 7Wu Xingping & Tang Chunlei,Some existence theorems for elliptic resonant problems[J].J.Math.Anal.Appl.,264(2001),133-146.
  • 8Tang Chunlei & Gao Qiju,Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term[J].Academic Press,0022-0396(1998),56-66.
  • 9Tang Chunlei & Wu Xingping,Existence and multiplicity of solutions of semi-Linear elliptic equations[J].J.Math.Anal.Appl.,256(2001),1-12.
  • 10Lions,P.L.,The concentration-compactness principle in the calculus of variations[J].The limit case (Ⅰ),Revista Math.Ibero.,1(1985),145-201.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部