期刊文献+

克隆选择算法的线状要素图形简化模型

A Simplification Model of Linear Features Based on the Clonal Selection Algorithm
原文传递
导出
摘要 线状要素作为占据地图图形80%以上的地图目标,其自动概括是制图综合的一个重要内容。线状要素图形简化是其制图综合的一个主要手段。本研究以克隆选择算法的基本原理,分析对线状要素数据进行压缩时图形简化的约束条件,顾及线状要素的几何精度和形状特征,设计相应的编码机制、变异机制和亲和度函数,提出一种新的线状要素图形自动简化模型。同时,结合不可行解修复机制,提高图形简化的精度。最后,将该模型与道格拉斯算法、遗传算法的简化结果作对比,实验表明,在相同的几何精度内,文中提出的线状要素图形简化模型,在保持线状要素图形形状方面表现更佳。 The automatic generalization of linear features is an important aspect of map generalization, for linear features occupy more than 80 percent of the map objects. As a major means of linear features gener-alization, graphic simplification has been the concern of many scholars at home and abroad, they make many researches to implement a large number of automated algorithms. With the intelligent optimization algorithm widely used in various fields, many scholars have tried to introduce the intelligent optimization algorithm into the field of map generalization. And then several scholars have applied the genetic algo-rithm and ant colony algorithm to the linear feature graphic simplification. They achieved good results, but some defects, too. The artificial immune system development started relatively late, but it has been widely used in various fields, and has got amazing achievements. In this paper we presented a new linear feature graphics automatically simplified model based on the basic principles of clonal selection algorithm, which is kind of AIS, and analyzed the graphics simplification constraints of linear features data compres-sion, taking into account the geometric precision and the shape keeping function. Then we designed the appropriate coding mechanism, mutation mechanism and affinity function, meanwhile combining with in- feasible solutions repair mechanisms to improve the precision of graphic simplification. At the end, we compared the simplification results with the clonal selection algorithm, Douglas algorithm and genetic al-gorithm. Experiments show that, in the same geometric accuracy, the linear feature graphics simplifica-tion model this study proposed gave better performance in keeping the shape of linear features graphics. Experiments also verify the feasibility of the artificial immune system in solving the problem of linear fea-ture graphic simplification.
出处 《地球信息科学学报》 CSCD 北大核心 2012年第6期698-703,共6页 Journal of Geo-information Science
基金 中央高校基本科研业务费专项资金资助(2012205020208) 国家自然科学基金项目(41071289 41171350)
关键词 克隆选择 制图综合 线状要素 图形简化 智能化 clonal selection map generation linear feature simplification intellectualization
  • 相关文献

参考文献14

  • 1Douglas D, Peucker T. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. The Canadian Cartographer, 1973, 10(2):112- 122.
  • 2Li Z L, Openshaw S. Algorithms for antomated line generalization based on a natural principle of objective generation[J].International Journal of Geographical Information Systems.1992, 6(5):373-389.
  • 3郭庆胜.线状要素图形综合的渐进方法研究[J].武汉测绘科技大学学报,1998,23(1):52-56. 被引量:36
  • 4Cromley R G, Gampbell G M. Integrating quantitative and qualitative aspects of digital line simplification[J].The Cartographic Journal.1992, 29(1):25-30.
  • 5Van Dijk S, Thierens D, De Berg M. Using genetic algorithms for solving hard problems in GIS[J].Geoinformatica.2002, 6(4):381-413.
  • 6武芳,邓红艳.基于遗传算法的线要素自动化简模型[J].测绘学报,2003,32(4):349-355. 被引量:32
  • 7郑春燕,郭庆胜,胡华科.基于蚁群优化算法的线状目标简化模型[J].测绘学报,2011,40(5):635-638. 被引量:13
  • 8De Castro L N, Vonzuben F J. Artificial immune system: Part I - Basic theory and applications (Teeh. Rep. - RT DCA 01/99)[M]. Campinas,SP: State University of Campinas, Brasil, 1999: 10 - 25.
  • 9De Castro L N, Vonzuben F J. Immune and neural network models: Theoretial and empirical comparisons[J].International Journal of Computational Intelligence and Applications(IJCIA.2001,1(3):239-257.
  • 10钟燕飞,张良培,李平湘.基于非一致性自适应变异的克隆选择算法[J].武汉大学学报(信息科学版),2009,34(3):308-312. 被引量:2

二级参考文献30

  • 1钟燕飞,张良培,龚健雅,李平湘.基于克隆选择的多光谱遥感影像分类算法[J].中国图象图形学报(A辑),2005,10(1):18-24. 被引量:6
  • 2汤凌,郑肇葆,虞欣.一种基于人工免疫的图像分割算法[J].武汉大学学报(信息科学版),2007,32(1):67-70. 被引量:16
  • 3De Castro L N, Timmis J. Artificial Immune systems: A New Computational Intelligence Approach [M]. London: Springer Verlag, 2002
  • 4De Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Principle [J]. IEEE Transactions on Evolutionary Computation, 2002, 6:239 250
  • 5Kim J, Bentley P. Towards an Artificial Immune System for Network Intrusion Detection: An Investigation of Clonal Selection with a Negative Selection Operator[C]. Congress on Evolutionary Computation, Seoul, Korea, 2001
  • 6Zhang Liangpei, Zhong Yanfei, Huang B, et al. Dimensionality Reduction Based on Clonal Selection for Hyperspectral Satellite Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4 172-4 186
  • 7Adams D. How the Immune System Works and Why It Causes Autoimmune Diseases [J]. Immunology Today, 1996,17(7) :300-302
  • 8Otsu N. A Threshold Selection Method from Gray Level Histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979,9(1):62-66
  • 9THAPA K. Automatic Line Generalization Using Zero Crossings[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(4): 511- 517.
  • 10DOUGLASD H, PEUCKER T K. Algorithms for the Reduction of the Number of Points Required to Represent a Line or Its Caricature[J]. The Canadian Cartographer, 1973, 10(2):112- 122.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部