期刊文献+

水热合成Fe_2O_3/石墨烯纳米复合材料及其电化学性能研究 被引量:2

Hydrothermal Synthesis and Lithium Storage Properties of Fe_2O_3/Graphene Nanocomposites
下载PDF
导出
摘要 利用水热法成功合成了Fe2O3/石墨烯(RGO)锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe2O3和集流体的作用.电化学性能测试表明,180℃下得到的Fe2O3/RGO具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g(电流密度为40mA/g),电流密度增加到800mA/g时,放电比容量维持在406.6mAh/g,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe2O3/RGO有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料. Fe2O3 nanoparticles on reduced grapheme oxide (RGO) sheets were successfully synthesized via hydro- thermal route for lithium ion battery applications. Selective growth of Fe2O3 nanoparticles on RGO sheets allowed for the electrically insulating Fe2O3 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Fe2O3 nano-particles formed on RGO at 180 ℃ show good rate capability and cycling stability. During the charge and discharge process with different current density, the initial discharge ca- pacity was 1023.6 mAh/g (current density: 40 mA/g). When the current density increased to 800 mA/g, the dis- charge capacity still retained at 406.6 mAh/g, higher than the theory capacity of grapheme-372 mAh/g, and the capacity retained stable in other relative high current density. The Fe2O3/RGO hybrid could be a promising can- didate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries.
出处 《常熟理工学院学报》 2012年第10期55-59,共5页 Journal of Changshu Institute of Technology
关键词 FE2O3 石墨烯 负极材料 Fe2O3 reduced grapheme oxide cathode material
  • 相关文献

参考文献7

  • 1Poizot P, Laruelle S, Grugeonas S, et al. Nanosized transition metal oxides negative electrode materials for lithium-ion batteries [J].Nature, 2000, 407(6803): 496-499.
  • 2Wang HL, Cui LF, Cui Y, et aL Mn304-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries [J]. J A C S,2010,132: 13978-13980.
  • 3Wang L,Chen L, Yang G, et al. Preparation of Mn304 nanoparticles at room condition for supercapacitor application[J]. Powder Tech-nol, 2013,235: 76-81.
  • 4Hummers WS, Offeman RE. Preparation of graphite oxide [J]. J A C S, 1958, 80: 1339-1339.
  • 5Kim C, Noh M, Choi M, et al. Critical Size of a Nano Sn02 Electrode for Li-Secondary Battery [J]. Chem Mater, 2005,17:3297-3301.
  • 6Chen J, Xu LN, Li WL, et al. a -Fe203 nanotubes in gas sensor and lithium-ion battery application[J]. Adv Mater, 2005, 17:582-585.
  • 7邹琼,宰建陶,刘萍,钱雪峰.中空Fe2O3/GNS纳米复合材料的制备和储锂性能[J].高等学校化学学报,2011,32(3):630-634. 被引量:8

二级参考文献15

  • 1Sun L.,Cao M.,Hu C..Solid State Sciences[J] ,2010,12:2020-2023.
  • 2Hummers W.S.,Offeman R.E..J.Am.Chem.Soc.[J] ,1958,80:1399.
  • 3TONGGuo-Xiu(童国秀) GUANJian-Guo(官建国) WUWen-Huz(吴文华) LILiang-Chao(李良超) GUANYao(关瑶) HUAQiao(华桥).中国科学技术科学,2010,.
  • 4Zhang W.,Chen J.,Wang X.,Qi H.,Peng K..Appl.Organomelal.Chem.[J] ,2009,23:200-203.
  • 5Chen J.,Xu L.N.,Li W.L..Adv.Mater.[J] ,2005,17(5):582-586.
  • 6Zhu Y.,Murali S.,Cai W.,Li X.,Ji W.S.,Jeffrey R.P.,Rodney S.R..Adv.Mater.[J] ,2010,22:3906-3924.
  • 7Lian P.,Zhu X.,Liang S.,Li Z.,Yang W.,Wang H..Electrochimica Acta[J] ,2010,55:3909-3914.
  • 8EunJoo Y.,Jedeok K.,Eiji H.,Zhou H.,Tetsuichi K.,Itaru H..Nano Lett.[J] ,2008,8(8):2277-2282.
  • 9Cong H.P.,He J.J.,Lu Y.,Yu S.H..Small[J] ,2010,6(2):169-173.
  • 10Zhou G.,Wang D.W.,Li F.,Zhang L.,Li N.,Wu Z.S.,Wen L.,Lu G.Q.,Cheng H.M..Chem.Mater.[J] ,2010,22(18):5306-5313.

共引文献7

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部