期刊文献+

基于FCM和LBF模型的医学图像自动分割 被引量:2

Automated Medical Image Segmentation Based on FCM and LBF Model
下载PDF
导出
摘要 基于局部区域二相拟合(LBF)模型的医学图像分割方法,对初始轮廓敏感并仅能分割单类目标,若手动选取的初始轮廓不合适,将导致算法耗时过大甚至分割失败。针对上述不足,提出联合模糊C均值(FCM)聚类的LBF模型自动分割算法。对待分割图像进行FCM聚类,将得到的目标类隶属度值变换为适用于LBF模型的水平集函数初始值,利用LBF模型从该初始值开始演化直至收敛,从而完成分割。合成图像及血管和脑部图像的分割实验结果表明,该算法能够自动获取合适的初始值,有效解决LBF模型对初始轮廓敏感的问题,减少迭代次数,而且通过选择不同的FCM聚类结果,可以实现对多类目标的分割。 The medical image segmentation based on Local Binary Fitting(LBF) model is sensitive to initial contour and merely available to single object.If its initial contour chosen manually is not suitable,the segmentation needs too much CPU time and sometimes is even unsuccessful.To overcome these disadvantages,an integrate Fuzzy C-means(FCM) clustering into LBF model is proposed for automated image segmentation.The image to be segmented is clustered into objects and background using FCM algorithm,from which the resulted fuzzy membership of each object is transformed into the initial value of level set function with respect to the LBF model.Starting from the initial value,the evolution of LBF model is continued until convergence.Thus,the segmentation is accomplished.Experimental results on the synthetic and real images(blood vessel images and the brain image) show that the proposed algorithm can get the suitable initial value automatically.As a result,the sensitivity to the initial contour is solved effectively and the iteration number is also decreased considerably.Moreover,the multiple objects segmentation can be implemented by choosing the different cluster generated previously from FCM algorithm.
出处 《计算机工程》 CAS CSCD 2012年第24期200-204,共5页 Computer Engineering
基金 国家自然科学基金资助项目(60903127 61202314) 西北工业大学"翱翔之星计划"基金资助项目
关键词 图像分割 模糊C均值聚类 局部二相拟合模型 水平集 血管图像 磁共振图像 image segmentation Fuzzy C-means(FCM) clustering Local Binary Fitting(LBF) model level set vessel image Magnetic Resonance Imaging(MRI)
  • 相关文献

参考文献14

  • 1Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jaccobi Formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
  • 2Cremers D, Rousson M, Deriche R. A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape[J]. International Journal of Computer Vision, 2007, 72(2): 195-215.
  • 3罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309. 被引量:34
  • 4陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 5Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours[J]. International Journal of Computer Vision, 1997, 22(3): 61-79.
  • 6Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level Set Evolution Without Re-initialization: A New Variational Forrnulation[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Computer Society, 2005.
  • 7Li Chunming, Xu Chenyang, Gui Changfeng, et al. Distance Regularized Level Set Evolution and Its Application to Image Segmentation[J]. IEEE Transactions on Image Processing, 2010, 19( 12): 3243-3254.
  • 8Chan T, Vese L. Active Contours Without Edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 9Vese L, Chan T. A Multiphase Level Set Framework tbr Image Segmentation Using the Mumtbrd and Shah Model[J]. International Journal of Computer Vision, 2002, 50(1): 271-293.
  • 10Tsai A, Yezzi A, Willsky A S. Curve Evolution Implementation of the Mumford-Shah Functional for Image Segmentation, Denoising, Interpolation, and Magnification[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1169-1186.

二级参考文献102

  • 1蒋晓悦,赵荣椿.一种改进的活动轮廓图像分割技术[J].中国图象图形学报(A辑),2004,9(9):1019-1024. 被引量:7
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3石澄贤,王洪元,夏德深.小波域上图像非线性扩散滤波[J].中国图象图形学报(A辑),2004,9(12):1449-1453. 被引量:4
  • 4张继武,张道兵,史舒娟,孙立新,许朝晖.基于水平集方法的数字胸片图像分割[J].中国图象图形学报(A辑),2004,9(12):1459-1465. 被引量:9
  • 5Yezzi A,Zoollei L,Kapur T.A variational framework for joint segmentation and registration[A].In:IEEE Workshop on Mathematical Methods in Biomedical Image Analysis[C],Kauai,HI,USA,2001:44 ~51.
  • 6CHEN Yun-mei,Thiruvenkadam S,Feng Huang,et al.Simultaneous segmentation and registration for functional MR images[J].In:IEEE Proceedings 16th International Conference on Pattern Recognition[C],Québec,QC,Canada,2002,1:747 ~ 750.
  • 7Kim J,Tsai A,Cetin M,et al.A curve evolution-based variational approach to simultaneous image restoration and segmentation[A].In:Proceedings Conference on Image Processing[C],Rochester,New York,USA,2002,1:109 ~ 112.
  • 8Moelin M,Chan T F.Tracking objects with the Chan-Vese algorithm[R].UCLA CAM Report[EB/OL],http://www.math.ucla.edu/applied/cam
  • 9Paragios N,Deriche R.Unifying boundary and region-based information for geodesic active tracking[A].In:IEEE ComputerSociety Conference on Computer Vision[C],Fort Collins,Colorado,USA,1999,2:23 ~ 25.
  • 10Paragios N,Deriche R.Geodesic active regions for motion estimation and tracking[A].In:Proceedings of the 7th IEEE International Conference on Computer Vision[C],Kerkyra,Greece,1999,1:668 ~ 694.

共引文献85

同被引文献17

  • 1杨悦,郭树旭,任瑞治,于永力.基于核函数及空间邻域信息的FCM图像分割新算法[J].吉林大学学报(工学版),2011,41(S2):283-287. 被引量:10
  • 2CHEN S,ZHANG D. Robust image segmentation using FCM with spatial constraints based on new kernel - induces distance measure [ J ]. IEEE Trans. Systems Man Cybernet,200d,34(4):1907-1916.
  • 3AHMED M,YAMANY S, MOHAMED N ,et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [ J ]. IEEE Trans. M~ical Imaging,2001,21 (3) : 193-199.
  • 4BEZDEK J. Cluster validity with fuzzy sets [ J ].Journal of Cybemetics, 1974,3( 1 ) :58-72.
  • 5ZHANG D, CHEN S. Clustering incomplete data using kernel-based fuzzy c-means algorithm[ J ]. Neural Process Lett. ,2003,18 (3) : 155-162.
  • 6SHEN H, YANG J, WANG S, et al. Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets [ J ]. Soft Comput. ,2006,10( 11 ) :1061-1073.
  • 7KRISTA R. An efficient k '-means clustering algorithm[ J ]. Pattern Rec- ognition Letters,2008,29(9) :1385-1391.
  • 8FANG Chonglun,WEl Jin,MA Jinwen. K'-means algorithms for cluste- ring analysis with frequency sensitive discrepancy metrics [ J ]. Pattern Recognition Letters ,2013,34(5 ) :580-586.
  • 9原野,何传江.LBF活动轮廓模型的改进[J].计算机工程与应用,2009,45(15):177-179. 被引量:19
  • 10李志梅,肖德贵,王丽丽.基于小波变换和KFCM的彩色图像分割[J].计算机工程,2009,35(19):203-205. 被引量:3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部