期刊文献+

基于互联网搜索与反馈验证的图像自动标注 被引量:1

Automatic Image Annotation Based on Internet Search and Verification of Feedback
下载PDF
导出
摘要 基于网页的图像自动标注存在图像与文本的关联假设问题,而基于内容的方法则存在数据规模小的问题。为此,将基于内容和基于网页的自动标注方法相结合,提出基于互联网搜索和反馈验证的图像自动标注方法。利用网页关联文本从互联网搜索结果中提取候选标注词,根据候选标注词在搜索得到图片的内容特征进行反馈验证。实验结果表明,该方法具有大规模标注能力,准确率比基于网页的图像自动标注方法提高了7.92%。 Up to nowadays,the research of Web-based automatic image annotation is mainly about the problem of the relevance assumption of the image and text,and the main problem of the content-based automatic image annotation is the limit of the database.Aiming at this problem,this paper proposes the Internet-search-based automatic image annotation with the verification of feedback,combining the content-based and the Web-based automatic image annotation.It extracts candidate labels from the search results using Web-based texts associated with the image,and then verifies the final results by using the Internet search results of the candidate labels with the content-based image features.Experimental results show that this method can annotate the large-scale database,with high accuracy,and achieves 7.92% improvement on the basis of web-based automatic image annotation.
出处 《计算机工程》 CAS CSCD 2012年第24期211-215,共5页 Computer Engineering
基金 国家自然科学基金资助项目(60873179) 福建省自然科学基金资助项目(2011J01367) 高等学校博士学科点专项科研基金资助项目(20090121110032) 深圳市科技计划基础研究基金资助项目(JC200903180630A) 深圳市科技研发深港创新圈计划基金资助项目(ZYB200907110169A)
关键词 图像自动标注 互联网搜索 网页 关联文本 图像内容特征 反馈验证 automatic image annotation Internet search webpage associated text image content feature verification of feedback
  • 相关文献

参考文献10

  • 1Bamard K, Duygulu P, Forsyth D, et al. Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary[C]//Proceedings of ECCV'02. Copenhagen, Denmark: [s. n.], 2002: 97-112.
  • 2Russell B C, Torralba A, Murphy K P, et al. Labelme: A Database and Web-based Tool for Image Annotation[J]. Intemational Journal of Computer Vision, 2008, 77(1-3): 157-173.
  • 3Everingham M, van Gool L, Williams C K I, et al. The PASCAL Visual Object Classes(VOC) Challenge[C]//Proceedings of VOC'09. [S. 1.]: Springer Science and Business Media, 2009.
  • 4Jeon J, Lavrenko V, Manmatha R. Automatic Image Annotation and Retrieval Using Cross-media Relevance Models[C]//Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval. Toronto, Canada: ACM Press, 2003: 119-126.
  • 5Blei D, Jordan M I. Modeling Annotated Data[C]//Proceedings of the 26th International ACM SIGIR Conference on Research and Development in Information Retrieval. Toronto, Canada: ACM Press, 2003: 127-134.
  • 6Feng Shaolei, Manmatha R, Lavrenko V. Multiple Bernoulli Relevance Models for Image and Video Annotation[C]// Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Computer Society, 2004: 1002-1009.
  • 7Jin Y, Khan L, Wang Lei. image Annotation by Combining Multiple Evidence & Wordnet[C]//Proceedings of the 13th annual ACM International Conference on Multimedia. Singapore: ACM Press, 2005: 706-715.
  • 8Liu Jing, Li Mingjing, Liu Qingshan, et al. Image Annotation via Graph Learning[J]. Pattem Recognition, 2009, 42(2): 218-228.
  • 9许红涛,周向东,向宇,施伯乐.一种自适应的Web图像语义自动标注方法[J].软件学报,2010,21(9):2183-2195. 被引量:15
  • 10黄鹏,陈纯,王灿,卜佳俊,陈伟,仇光.使用加权图像标注改进Web图像检索[J].浙江大学学报(工学版),2009,43(12):2129-2135. 被引量:1

二级参考文献43

  • 1RUI Y, HUANG T S, CHANG S F. Image retrieval: current techniques, promising directions and open issues [J]. Journal of Visual Communication and Image Representation, 1999, 10(1): 39-62.
  • 2SMEULDERS A W M, WORRING M, SANTINI S, et al. Content-based image retrieval at the end of the early years[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2 0 0 0, 2 2 (12) : 13 4 9 - 13 8 0.
  • 3MONAY F, GATICA-PEREZ D. On image auto-annotation with latent space models[C]// Proceedings of the llth ACM International Conference on Multimedia. New York, USA: ACM, 2003..275-278.
  • 4MORI Y, TAKAHASHI H, OKA R. Image-to-word transformation based on dividing and vector quantizing images with wordsC]// 1st International Workshop on Multimedia Intelligent Storage and Retrieval Management. USA: [s. n], 1999.
  • 5DUYGULU P, BARNARD K, FREITAS N, et al. Object recognition as machine translation: learning a lexicon for a fixed image vocabulary[C]//Proceedings of the 7th European Conference on Computer Vision-Part IV. London, UK: Springer-Verlag, 2002:97-112.
  • 6LI J, WANG J Z. Automatic linguistic indexing of pictures by a statistical modeling approach [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003, 25(9) :1075 - 1088.
  • 7CUSANO C, CIOCCA G, SCHETTINI R. Image annotation using SVM[C]// Proceedings of SPIE. San Jose, CA,USA:SPIE, 2004, 5304:330-338.
  • 8JEON J, LAVRENKO V, MANMATHA R. Automatic image annotation and retrieval using cross-media relevance models[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Canada: ACM, 2003~119 - 126.
  • 9IAVRENKO V, MANMATHA R, JEON J. A model for learning the semantics of pictures[C]//Proceedings of Advance in Neutral Information Processing. Cambridge, MA: MIT, 2003:100-107.
  • 10JIN Y, KHAN L, WANG L, et al. Image annotations by combining multiple evidence&WordNet [C]//Proceedings of tile 13th Annual ACM International Conference on Multimedia. Singapore: ACM, 2005:706 - 715.

共引文献14

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部