期刊文献+

基于多特征融合的图像检索算法 被引量:3

Image Retrieval Algorithm Based on Multi-feature Fusion
下载PDF
导出
摘要 为有效提取和描述图像特征,提高图像检索性能,提出一种基于纹理、颜色和形状多特征融合的图像检索算法。检测彩色图像的边缘,对其进行变换得到基元图像。遍历基元图像得到基元共生矩阵,对每个基元求梯度值得到基元梯度直方图。将彩色图像量化到64色颜色空间,得到对应的颜色直方图。利用上述3个特征量描述图像特征,并用于图像检索。实验结果表明,与BCTF和MCM算法相比,该算法的查全率和查准率较高,计算复杂度较低。 In order to effectively extract and describe the image feature and improve image retrieval performance,this paper presents a novel image retrieval algorithm based on fusion of texture,color and shape features.The color image edge is detected,and by means of edge image transform,a motif transformed image is obtained.A Motif Co-occurrence Matrix(MCM) is obtained through traversal of the motif transformed image,and the algorithm calculates the gradient of the all motifs of the motif transformed image to get the motif gradient histogram.It obtains the color histogram by uniformly quantize the RGB color image into 64 colors.The image characteristic is described by three image features and it is used to image retrieval.Experimental results indicate that the algorithm has higher precision and recall rate compared with BCTF and MCM algorithm.It can reduce computational complexity.
出处 《计算机工程》 CAS CSCD 2012年第24期216-219,224,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61165011) 湖南省科技计划基金资助项目(2011GK3172)
关键词 图像检索 多特征融合 基元图像 基元共生矩阵 基元梯度直方图 颜色直方图 image retrieval multi-feature fusion motif image Motif Co-occurrence Matrix(MCM) Motif Gradient Histogram(MGH) color histogram
  • 相关文献

参考文献11

二级参考文献51

  • 1王成儒,吴娅辉.旋转不变纹理特征用于两级图像检索[J].光电工程,2005,32(3):70-72. 被引量:10
  • 2曾智勇,张学军,周利华.基于显著封闭边界的图像检索算法[J].计算机科学,2006,33(8):221-224. 被引量:1
  • 3Montagnat J, Duque H, Pierson J M, et al. Medical image content-based queries using the grid[ C] // Proceedings of the First European Health Grid Conference. Lyon: Elsevier, 2004:138 - 147.
  • 4Muller H, Michoux N, Bandon D, et al. A review of content- based image retrieval systems in medical application--clinical benefits mad future directions [ J ]. International Journal of Medical Informatics, 2004,73(2) : 1 - 23.
  • 5Arnold W, Smeulders M, Marcel W, et al. Content-based image retrieval at the end of the early years[J]. IEEE PAMI, 2000,22(12) : 1349 - 1380.
  • 6Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age[J ]. ACM Computing Surveys, 2008,40(2) : 1 - 60.
  • 7Marcelo C O, Walfredo C, de Paulo M A M. Towards applying content-based image retrieval in clinical routine[J]. Future Generation Computer Systems, 2007,23 : 466 - 474.
  • 8Haralick R M, Shanmuga K, Dinstein I. Texture features for image classification[J]. IEEE Trans on Systems, Man, and Cybernetics, 1973,3(6) :610 - 621.
  • 9Ramtin S, Parastoo S, Rodney A K. Gradient intensity: a new information-based registration method [ C ]// IEEE, Computer Vision and Pattern Recognition. Minnesota: IEEE, 2007:1 - 8.
  • 10Pluim J P W, Maintz J B A, Viergever M A. Mutualinformation-based registration of medical images: a survey[ J ]. IEEE Trans on Medical Imaging, 2003,22(8) :986 1004.

共引文献48

同被引文献23

  • 1吴建波,赵建民,朱信忠,徐慧英.基于一种SIFT优化算法的图像检索[J].微型电脑应用,2011(5):4-7. 被引量:6
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3石莹,何炎祥,刘茂福.一种基于交互式遗传算法的图像检索模型[J].计算机工程,2006,32(7):207-209. 被引量:5
  • 4江祥奎,原思聪,王发展.基于灰色系统理论的多特征相关反馈图像检索[J].计算机工程,2006,32(23):180-182. 被引量:6
  • 5SIDIROPOULOS P, VROCHIDIS S, KOMPATSIARIS I. Content- based binary image retrieval using the adaptive hierarchical density histogram [ J]. Pattern Recognition, 2011, 44(4) : 739 - 750.
  • 6POOJA C S. An effective image retrieval using the fusion of global and local transforms based features[ J]. Optics and Laser Technolo- gy, 2012, 44(7):2249-2259.
  • 7SUBRAHMANYAM M, MAHESHWARI R P, RAI AglRR AM ANI1 AN R. local maximum edge binary patterns: A new descriptor for image retrieval and object tracking [J]. Signal Processing, 2012, 92(6): 1467 - 1479.
  • 8HU R X, JIA W, ZHAO Y, et al. Perceptually motivated morphological strategies for shape retrieval [ J ]. Pattern Recognition, 2012, 45(9):3222-3230.
  • 9WAHAB M H A, HSIEH T M. Image retrieval based on color and texture features [ C ]// Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery. Washington, DC : IEEE Computer Society, 2012 : 1816 - 1819.
  • 10V1MINA E R, POULOSE JACOB K. Image retrieval using colour and texture features of regions of interest [ C ]// 2012 International Conference on Information Retrieval & Knowledge Management. Washington, DC: IEEE Computer Society, 2012:240 - 243.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部