摘要
引进了5元函数类Φ,构造了满足一种φ_j-拟收缩型条件的2-度量空间(X,d)上的自映射族{T_(i,j)}_i∈N∪{0},j∈N决定的收敛序列,然后证明了当X是完备且满足条件T_(a,μ)·T_(β,v)=T_(β,v)·T(a,μ),(?)α,β∈N∪{0},μ,v∈N且μ≠v时,该序列的极限就是该映射族{T_(i,j)}_i∈N∪{0},j∈N的唯一的公共不动点.该文的定理推广和改进了很多2-度量空间上的唯一公共不动点定理.
A class of 5-dimensional functions $ was introduced,and a convergent sequencedetermined by a family of self-maps {T_(i,j)}_(i∈N∪{0},j∈N),which satisfy someφ_j-contractive conditionin a 2-metric space,was constructed,and then that the limit of the sequence is the uniquecommon fixed point of the maps {T_(i,j)}_(i∈N∪{0},j∈N) was proved when X is complete and thefollowing condition T_(α,μ) ? T_(β,ν) = T_(β,ν)·T_(α,μ) for allα,β∈N∪{0},μ,ν∈N,μ≠νis satisfied.Our main theorem improves and generalizes many known unique common fixed point theoremsin 2-metric spaces.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2012年第6期1079-1085,共7页
Acta Mathematica Scientia
基金
吉林省教育厅"十二五"科学技术研究项目(吉教科合字2011[第434号])资助
关键词
2-度量空间
柯西序列
5元函数类Φ
φ_j-拟收缩条件
公共不动点
2-metric spaces
Cauchy sequence
Class of 5-dimensional functionsΦ
φ_j-quasi contractive condition
Common fixed point