摘要
研究具有统计相关关系的二维连续型随机变量(ξ,η)的非线性回归分析问题:η=f(ξ)+ε,ξ的分布是已知的,ξ与ε独立,ε~N(0,σ2).首先推得(ξ,η)的联合密度φ(x,y),通过对φ(x,y)统计学性质、几何性质研究,将非线性回归问题归结为泛函极值问题,应用变分法,对于ξ服从不同的分布及η满足不同的约束条件,得出了依据(ξ,η)的一组样本值确定回归曲线f(x)的解析解的方法.
The paper studies the analysis of two dimensional continuous random variable nonlinear regression with statistical correlation, that is, η = f(ξ) + ε , the distribution ξ is known and ξ is independent of ε, ε N(0, σ2 ) . The joint density (ξ,η) is φ(x,y) , and based on the study of the statistical properties φ(x,y) , geometrical properties, the nonlinear regression problem is considered to be attributed to functional extremum problem. By the variational method, for the different distxibutions of ξ and the dif- ferent constraint conditions of η , according to a group of sample values of (ξ, η) , the analytical method to determine the regression curvesf(x) is obtained.
出处
《渭南师范学院学报》
2012年第12期5-8,31,共5页
Journal of Weinan Normal University
基金
陕西省教育厅自然科学专项基金项目(12JK0866)
渭南师范学院科研计划项目(11YKF010)
关键词
非线性回归
样本值
变分法
泛函极值
nonlinear regression
sample value
variational method
functional extremum