期刊文献+

混合分数布朗运动下可延迟交付的附息债券期权定价

Coupon-bonds Option Pricing under a Mixed Fractional Brownian Motion Environment
下载PDF
导出
摘要 基于混合分数布朗运动驱动金融市场的情况下,附息票债券服从混合分数布朗运动驱动的随机微分方程,且短期利率遵循混合分数布朗运动驱动的Hull—White模型,运用偏微分方程方法及混合分数布朗运动随机分析理论,建立了可延迟交付的附息票债券期权的定价模型及定价公式. Assuming that the mathematical model for the financial market in mixed fractional Brownian motion setting. And the short-term interest rates satisfy the Hull-White model driven by mixed fractional Brownian motion. Using the methods of PDEs, we obtained the pricing formula for coupon-bonds option with delay in delivery.
出处 《渭南师范学院学报》 2012年第12期21-27,共7页 Journal of Weinan Normal University
基金 陕西省自然科学研究基金项目(2010JM1010)
关键词 混合分数布朗运动 Hull--White模型 附息票债券期权 mixed fractional Brownian motion Hull-White model coupon-bonds option
  • 相关文献

参考文献6

  • 1Cheridito P. Regularizing Fractional Brownian Motion with a View towards Stock Pric Modelling[ D]. Zurich :Swiss Federal In- stitute of Technology Zurich, 2001.
  • 2Bender C, Sottine T, Valkeila E. Arbitrage with fractional Brownian motion [ J ]. Theory of Stochastic Processes,2006,12 (3) : 1- 12.
  • 3Bender C, Sottine T, Valkeila E. Pricing by hedging and absence of regular arbitrage beyond semi mtmingales[ J]. Finance and Stochastics, 2008, 12(4) :441 - 468.
  • 4余征,闫理坦.混合分数布朗运动环境下的欧式期权定价[J].苏州科技学院学报(自然科学版),2008,25(4):4-10. 被引量:11
  • 5杨朝强.混合分数布朗运动下一类欧式回望期权定价[J].山东大学学报(理学版),2012,47(9):105-109. 被引量:6
  • 6RONG Yue-tang,ZHANG Lu. The Pricing Formula for Coupon-Bonds Option with Delay in Delivery in Fractional Brownian Mo- tion Environment[ C]//2012 3rd International Conference on E-Business and E-Government. Shanghai: the IEEE Inc,2012. 2256 - 2260.

二级参考文献15

  • 1Biagini F, Hu Y, Ksendal B, et al. Stochastic Calculus for Fractional Brownian Motions and Appllcations[M]. B(;rlin :Springer-Verlag,2008.
  • 2Cheridito P. Regularizing Fractional Brownian Motion with a Miew towards Stock Price Modeling[M]. Zurich :Dissertation in Zurich University, 2002.
  • 3Bender C, Sottine T, Valkeila E. Arbitrage with fractional Brownian motion[J]. Theory of Stochastic Processes, 2006,12 (3):1-12.
  • 4Bender C ,Sottine T,Valkeila E. Pricing by hedging and absence of regular arbitrage beyond semimartingales[J]. Finance and Stochastics ,2008, 12(4) :441-468.
  • 5Cheridito P. Mixed fractional Brownian motion[J]. Bernoulli. 2001.7 : 913-934.
  • 6Mishura Y. Stochastic Calculus for Fractional Brownian Motions and Related Processes[M]. Berlin:Springer,2008:1929.
  • 7Nualart D. Malliavin Calculus and Related Topics[M]. 2nd-edn. Berlin:Springer-Verlag,2006.
  • 8Hu Y,Oksendal B. Fractional white noise calculus and applications to finance[J]. Infin Dimens Anal Quantum Probab,2003,6:1-32.
  • 9YUE KUEN KWOK. Mathematical models of financial derivatives [ M]. 2nd ed. Berlin: Springer, 2008: 202-207.
  • 10ROBERT J ELLIOTr, P EKKEHARD KOPP. Mathematics of financial markets [M ]. 2nd ed. Berlin .. Springer, 2010 : 167- 217.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部