期刊文献+

K_2Ti_4O_9制备TiO_2-B纤维快速嵌锂负极材料 被引量:3

TiO_2-B fibres derived from K_2Ti_4O_9 as fast lithium intercalation negative material
下载PDF
导出
摘要 以四钛酸钾(K2Ti4O9)经离子交换得到的四钛酸(H2Ti4O9.xH2O)为前驱体,经过不同温度热处理得到不同结晶度的氧化钛纤维。对样品进行XRD、Raman、FE-SEM及TEM等结构形貌表征,发现600℃烧结可得到纯相、高结晶度的TiO2-B材料。并考察了其作为锂离子电池负极材料的容量、倍率和稳定性。嵌锂性能测试发现,TiO2-B相材料的首放容量可以达到225mA.h.g-1,比相近结构的锐钛矿(anatase)相材料高50mA.h.g-1,即22.5%的容量。与相似结构anatase材料的倍率结果对比发现,TiO2-B纤维倍率性能更高,主要是TiO2-B纤维的开放结构使其锂离子扩散系数达到1.92×10-7 cm2.s-1,是anatase相材料的8倍。1C稳定性测试发现循环80次后容量仍然高于anatase,且最终容量稳定在159mA.h.g-1,比anatase材料的64mA.h.g-1高1.5倍。 TiO2-B fibers were obtained by heat treatment of the precursor of tetratitanate(H2Ti4O9· xH2O),which was derived from potassium tetratitanate(K2Ti4O9)via ion exchange.Structure characterization showed that TiO2-B fibers sintered at 600℃ still maintained pure phase and high crystallinity.Lithium insertion performance indicated that the capacity performance of this TiO2-B material sintered at 600℃ was up to 225 mA·h·g-1,and was 50 mA·h·g-1(i.e.22.5%)higher than that of the anatase material with similar structure.The TiO2-B fibers exhibited excellent rate performance mainly because the open structure of the TiO2-B fibers led to fast lithium-ion diffusion coefficient of 1.92×10-7 cm2·s-1,which was nearly 8 times higher than that of anatase material.1 C stability test showed that the capacity of TiO2-B fiber was 159mA.h.g-1 after 80cycles,which was about 1.5times higher than the capacity of anatase material(64mA.h.g-1).
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第1期374-380,共7页 CIESC Journal
基金 教育部创新团队项目(PCSIRT0732) 国家自然科学基金项目(21136004 20736002 21176113 20876073 21136001) 中国博士后科学基金项目(20110491407) 国家重点基础研究发展计划项目(2009CB623407 2009CB219902 2009CB226103)~~
关键词 TiO2-B纤维 四钛酸钾 负极材料 锂离子电池 TiO2-B fibres potassium tetratitanate negative materials lithium ion batteries
  • 相关文献

参考文献2

二级参考文献12

共引文献61

同被引文献43

  • 1Wang J. Electrochemical glucose biosensors [J]. Chemical Reviews, 2007, 108(2): 814-825.
  • 2Tasviri M, Rafiee-Pour H-A, Ghourchian H, Gholami M R. Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing [J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 68(2): 206-210.
  • 3Kumar M A, Jung S, Ji T. Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods [J]. Sere'ors, 2011, 11(5): 5087-5111.
  • 4Rahman M M, Ahammad A J S, Jin J H, Ahn S J, Lee J J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides [J]. Sensors, 2010, 10(5): 4855-4886.
  • 5Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Graphene based electrochemical sensors and biosensors: a review [J]. Electroanalysis, 2010, 22(10): 1027-1036.
  • 6Dhand C, Das M, Datta M, Malhotra B D. Recent advances in polyaniline based biosensors [J]. Biosensors and Bioelectronics, 2011 26(6): 2811-2821.
  • 7Ramanavirius A, Ramanaviaiene A, Malinauskas A. Electrochemical sensors based on conducting polymer-polypyrrole [J]. Electroehimica Acta, 2006, 51(27): 6025-6037.
  • 8Zuo S H, Teng Y J, Yuan H H, Lan M B. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica solcel/polyvinyl alcohol hybrid film[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 555-560.
  • 9Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications [J], Chemical Reviews, 2007, 107(7): 2891-2959.
  • 10Wang Z, Lou X W. TiO2 Nanocages: fast synthesis, interior functionalization and improved lithium storage properties [J]. Advanced Materials, 2012, 24(30): 4124-4129.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部