期刊文献+

基于改进SPIHT的医学图像压缩 被引量:1

Medical Image Compression Based On Improved SPIHT Algorithm
下载PDF
导出
摘要 为了满足医学数据的存储和传输的需要,在SPIHT算法的基础上,提出了一种基于改进SPIHT的医学图像压缩算法,实现了对医学图像的编码。该算法在减少编码时间的同时,能够得到较高的压缩比,重建图像的峰值信噪比也有明显的提高。选取几幅医学图像进行有效性的验证,试验结果表明:此算法可以更好地保留图像的客观质量,提高了编解码的效率,获得了较好的压缩效果。 In order to meet the needs of the storage and transmission of medical data, On the basis of the SPIHT algorithm, medical data compression algorithm based on improved SPIHT is put forward, it achieves the coding of medical images.The algorithm not only can reduce the coding time, but also can get higher compression ratio and higher PSNR of the reconstructed image.We select pieces of medical images to verify the validity of the algorithm.Experimental results show that the algorithm can better retain the objective image quality, at the same time, it can improve the efficiency of the codec and we can get better compression.
作者 张伟 谢凯
出处 《电子世界》 2013年第1期52-53,共2页 Electronics World
  • 相关文献

参考文献4

  • 1周炯磐,丁晓明,编著.信源编码原理[M].人民邮电出版社,1996.
  • 2Shapiro J M.Embedded image coding using zerotrees of wavelet eoefficients[J].IEEE Trans on Signal Processi ng,1993,41 (12):3445-3462.
  • 3Amir Said.WiUiam A Pearlman.A new,fast and efficient image codec based on set portioning in hierarchical trees[J].IEEE Trims cstv,1996,6(3):243-249.
  • 4姜会亮,胡学龙,郭振民,高燕.整数(5,3)小波变换结合SPIHT的无损图像压缩[J].计算机工程与应用,2005,41(14):69-70. 被引量:6

二级参考文献8

共引文献5

同被引文献11

  • 1Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Ansari F J, Ali A. A Comparison of the DCT JPEG and Wavelet Image Compression Encoder for Medical Images[M]. Berlin, Germany: Springer-Verlag, 2012.
  • 3Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M]. Berlin, Germany: Springer-Verlag, 2010.
  • 4Rubinstein R, Zibulevsky M, Elad M. Efficient Implemen- tation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit[R]. Computer Science Department, Technion, Tech Rep: CS-2008-08, 2008.
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 6Aharon M, Elad M, Bruckstein A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries tbr Sparse Represen- tation[J]. IEEE Transactions on Signal Processing, 2006, 54( 11 ): 4311-4322.
  • 7Tony C T, Wang Lie. Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4680-4688.
  • 8Mota J F, Xavier J M, Aguiar P M, et al. Distributed Basis Pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1942-1956.
  • 9Gorodnitsky I F, Rao B D. Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Re-weighted Minimum Norm Algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.
  • 10丁克良,沈云中,欧吉坤.整体最小二乘法直线拟合[J].辽宁工程技术大学学报(自然科学版),2010,29(1):44-47. 被引量:164

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部