期刊文献+

Co掺杂提高ZnIn_2S_4光催化剂可见光下的产氢性能(英文) 被引量:13

Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn_2S_4 under Visible Light
下载PDF
导出
摘要 采用溶剂热法制备出Co掺杂的ZnIn2S4催化剂.用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)漫反射光谱等技术对其进行了表征.XRD和XPS结果表明,Co成功地掺杂到ZnIn2S4晶格内.随着Co掺杂量增加,样品的吸收边发生红移,同时ZnIn2S4的微球形态会遭到破坏.光催化反应实验结果表明,Co2+掺杂提高了ZnIn2S4光催化性能,掺杂量为0.3%(w)时表现出最佳催化性能.并对可能的催化机理进行了讨论. A series of Co-doped Znln2S, photocatalysts were prepared via a solvothermal synthesis method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. The results indicated that the Co was successfully incorporated into the Znln2S4 lattice as confirmed by XRD and XPS. With increasing Co concentration, the absorption edge of the samples shiffed to longer wavelength, while the morphology of Znln2S4 was gradually destroyed. Photocatalytic results demonstrated that Co2+ doping could greatly enhance the photocatalytic activity of Znln2S,. The optimal amount of Co doping for the Znln2S, photocatalyst was 0.3%(w), which displayed the highest photocatalytic activity. The possible photocatalytic mechanism was discussed.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第1期151-156,共6页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China (20976057)~~
关键词 光催化剂 掺杂 可见光 制氢 分解水 Photocatalyst Doping Visible light Hydrogen generation Water splitting
  • 相关文献

参考文献29

  • 1Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125 (10), 3082. doi: 10.1021/ja027751g.
  • 2Kim, H. G.; Hwang, D. W.; Bae, S. W.; Jung, J. H.; Lee, J. S. Catal. Lett. 2003, 91 (3-4), 193,.
  • 3陈威,董新法,陈之善,陈胜洲,林维明.可见光下Fe^(3+)掺杂对K_2La_2Ti_3O_(10)分解水制氢性能的影响[J].物理化学学报,2009,25(6):1107-1110. 被引量:14
  • 4Huang, L. H.; Chan, Q. Z.; Zhang, B.; Wu, X. J.; Gao, P.; Jiao, Z. B.; Liu, Y. L. Chin. J. CatM. 2011, 32 (11-12), 1822. doi: 10.1016/S1872-2067(10)60286-0.
  • 5Zou, Z.; Ye, J.; Arakawa, H.; Sayama, K. Nature 2001, 414 (6864), 625. doi: 10.1038/414625a.
  • 6Kim, H. G.; Hwang, D. W.; Lee, J. S. J. Am. Chem. Soc. 2004, 126 (29), 8912. doi: lO.1021/jaO49676a.
  • 7Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440 (7082), 295. doi: 10.1038/ 440295a.
  • 8Ritterskamp, P.; Kuklya, A.; Wustkamp, M. A.; Kerpen, K.; Weidenthaler, C.; Demuth, M. Angew. Chem. Int. Edit. 2007, 46 (41), 7770.
  • 9Chaudhari, N. S.; Bhirud, A. E; Sonawane, R. S.; Nikam, L. K.; Warule, S. S.; Rane, V. H.; Kale, B. B. Green Chem. 2011, 13 (9), 2500. doi: 10.1039/elge15515f.
  • 10Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Phys. Chem. B 2005, 109 (15), 7323. doi: lO.1021/jpO44722e.

二级参考文献20

共引文献13

同被引文献447

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部