期刊文献+

AZ31镁合金高应变速率多向锻造组织演变及力学性能 被引量:18

Microstructure evolution and mechanical properties of AZ31 magnesium alloy fabricated by high strain rate triaxial-forging
下载PDF
导出
摘要 采用空气锤对AZ31合金在350℃以Δε=0.22的道次应变量进行1~12道次多向锻造变形,并对其组织和性能进行测试。结果表明:合金高应变速率多向锻造(HSRTF)组织演变分为两个阶段,累积应变∑Δε〈1.32时为晶粒细化阶段,其主要机制为孪晶再结晶;累积应变∑Δε〉1.32时为晶粒长大阶段,其主要机制为热激活长大。利用大量的孪晶对再结晶的促进作用,高应变速率多向锻造工艺可快速生产细晶粒高性能AZ31变形镁合金锭坯,累积应变∑Δε=1.32时,可获得组织均匀、平均晶粒度为7.4μm的锻坯,其抗拉强度、屈服强度和伸长率分别为313 MPa、209 MPa和28.6%。 High strain rate triaxial-forging(HSRTF) of AZ31 magnesium alloy was conducted by the pneumatic power hammer at 350 ℃ with a pass strain of 0.22,and the microstructure and mechanical properties of wrought alloy with the different accumulated strains was studied.The results show that the microstructure evolution is divided into two stages according to the different mechanisms: twin DRX(Dynamic recrystallization) induced grain refinement with the accumulated strain ∑Δε lower than 1.32 and thermal activated grain growth with the accumulated strain ∑Δε higher than 1.32.HSRTF is an efficient technique for the preparation of the fine-grained AZ31 alloys with perfect mechanical properties ascribe to the auxo-action of twins on DRX during high strain rate deformation.And a homogeneous structure with the average grain size of 7.4μm can be obtained with the accumulated strain ∑Δε of 1.32,which has the ultimate tensile strength(UTS),yield strength(YS) and elongation of 313 MPa,209 MPa and 28.6%,respectively.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第11期3000-3005,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(51274092) 湖南省自然科学基金资助项目(10JJ6081)
关键词 AZ31镁合金 高应变速率多向锻造 显微组织 孪晶再结晶 力学性能 AZ31 magnesium alloy high strain rate triaxial-forging microstructure twin dynamic recrystallization mechanical property
  • 相关文献

参考文献20

  • 1MORD1KE B L, EBERT T. Magnesium: Properties-applications- potential[J]. Materials Science and Engineering A, 2001, 302(1): 37-45.
  • 2AGHION E, BRONFIN B, ELIEZER D. The role of magnesium industry in protecting environment[J]. Journal of Materials Processing Technology, 2001, 117(3): 381-385.
  • 3AVEDESIAN M M, BAKER H. ASM specialty handbook: Magnesium and magnesium alloys[M]. Materials Park: ASM International, 1999: 7-8.
  • 4KAINER K U. Magnesium alloys and technology[M]. Weinheim: GKSS Research Center Geesthacht GmbH, 2003: 99-104.
  • 5GUO Q, YAN H G, CHEN Z H, ZHANG H. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation[J]. Materials Characterization, 2007, 58(2): 162-167.
  • 6郭强,严红革,陈振华,张辉.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744. 被引量:64
  • 7ZHANG Z R, XING J, YANG X, MIURA H, SAKAI T. Anisotropy of low temperature superplasticity of fine grained magnesium alloy AZ31 processed by multidirectional forging[J]. Materials Science and Technology, 2009, 25(12): 1442-1447.
  • 8杨续跃,孙争艳,XING 3Jie,MIURA Hiromi,SAKAI Taku.Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging[J].中国有色金属学会会刊:英文版,2008,18(A01):200-204. 被引量:9
  • 9MIURA H, YU G, YANG X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties[J]. Materials Science and Engineering A, 2011,528(22/23): 6981-6992.
  • 10H. MIURA,G. YU,X. YANG,T. SAKAI.Microstructure and mechanical properties of AZ61 Mg alloy prepared by multi directional forging[J].Transactions of Nonferrous Metals Society of China,2010,20(7):1294-1298. 被引量:7

二级参考文献103

共引文献235

同被引文献197

引证文献18

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部