期刊文献+

肝脏组织磷脂酰肌醇3-激酶/蛋白激酶B信号通路参与降低胎儿生长受限大鼠的胰岛素敏感性 被引量:5

Liver phosphatidylinosital 3-kinase/protein kinase B pathway is involved in the decrease of insulin sensitivity in rats with fetal growth restriction
原文传递
导出
摘要 目的探讨肝脏组织磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinosital 3-kinase/protein kinaseB,PI3-K/AKT)信号通路在胎儿生长受限(fetal growth restriction,FGR)大鼠胰岛素敏感性降低中的作用。方法母鼠受孕后第1天始随机分为对照组和低蛋白组,各10只。低蛋白组孕鼠采用低蛋白饮食法(粗蛋白含量为8.00%)建立FGR仔鼠模型。测定对照组和低蛋白组FGR仔鼠生后3、7、14、30、60及90d(每组每个时间点取雄性仔鼠8只)空腹血浆葡萄糖和血清胰岛素,计算胰岛素抵抗指数及胰岛素敏感指数。实时荧光定量聚合酶链反应技术检测雄性仔鼠生后7、14、30、60及90d肝脏组织胰岛素受体底物1、2和葡萄糖转运蛋白4mRNA表达水平,采用Western印迹技术测定胰岛素受体底物1、P13K(p110t3亚基)、AKT、磷酸化AKT蛋白表达水平。采用简单相关及多重线性回归分析肝脏组织中P13K/AKT信号通路关键分子表达改变与胰岛素敏感性变化间的关系。结果(1)低蛋白组新生仔鼠平均出生体重为(4.92±0.36)g,低于对照组的(6.43±0.59)g,差异有统计学意义(t=14.73,P〈0.05)。低蛋白组仔鼠中FGR发生率为88.2%(97/110),其中雄性仔鼠FGR发生率为94.1%(48/51)。(2)生后60d时FGR仔鼠空腹血浆葡萄糖开始高于对照组,直至90d。FGR仔鼠空腹血清胰岛素和胰岛索抵抗指数30d时显著高于对照组,持续至90d。FGR仔鼠胰岛素敏感指数自30d始即显著低于对照组,直至90d,差异均有统计学意义(P均〈0.05)。(3)与对照组相比,FGR仔鼠7d时胰岛素受体底物1、2mRNA表达均显著降低(0.45±0.02与0.68±0.03,t=16.633,P〈0.05;0.34±0.10与0.70±0.19,t=4.864,P〈0.05),并持续至生后90d(0.48±0.03与0.59±0.05,t=5.237,P〈0.05;0.49±0.20与0.70±0.11,t=2.253,P〈0.05);胰岛素受体底物1、PI3-K及磷酸化AKT蛋白表达自14d时出现降低(0.22±0.05与0.52±0.11,t=7.024,P〈0.05;0.46±0.03与0.97±0.08,t=17.508,P〈0.05;0.62±0.10与0.89±0.08,t=6.100,P〈0.05),持续至生后90d(1.11±0.08与1.32±0.14,t=3.714,P〈0.05;0.63±0.07与1.00±0.19,t=5.206,P〈0.05;0.28±0.03与0.45±0.10,t=4.880,P〈0.05)。(4)FGR仔鼠磷酸化AKT蛋白表达量与胰岛素敏感指数呈正相关(r=0.704,P%0.05);磷酸化AKT蛋白表达量分别与空腹血浆葡萄糖、空腹血清胰岛素和胰岛素抵抗指数变化呈负相关(r分别为-0.609、-0.561和-0.577,P均〈O.05)。结论FGR仔鼠肝脏组织中PI3-K/AKT信号通路中某些关键分子表达发生变化,可能参与了胰岛素抵抗的发生。 Objective To investigate the effect of liver phosphatidylinosital 3-kinase/protein kinase B (PI3-K/AKT) pathway on the decrease of insulin sensitivity in fetal growth restriction (FGR) rats. Methods Twenty pregnant female rats were randomly divided into two groups one day after conception=normal-protein group and low-protein group (n= 10, respectively). Rats in low protein group was given low- protein diet (8. 00% protein) during pregnancy to build FGR model, while normabprotein group was given normal-protein diet (20.00% protein). On day 3, 7, 14, 30, 60 and 90 after birth, fasting blood samples of 8 male FGR offsprings from low-protein group and 8 normal offsprings from normal-protein group were collected to measure fasting plasma glucose and insulin level. Then insulin resistance index and insulin sensitivity index were calculated to determine insulin sensitivity. On day 7, 14, 30, 60 and 90 after birth, liver tissue of 8 male FGR and normal offsprings were collected, insulin receptor substrate 1,2 (IRS1/IRS2) and glucose transporter 4 (GLUT4) mRNA expression were measured by real-time fluorescence polymerase chain reaction and the protein expressions of IRS1, PI3-K (subunit pll0p, and AKT and phosphorylated AKT (pAKT) were measured by Western blot. The relationships between the expression changes of key molecules of PI3-K/AKT pathway and insulin sensitivity were analyzed by correlation and multiple linear regression method. Results (1) Mean birth weight of baby rats in low-protein group was significantly lower than that of normal-protein group [(4. 92±0.36) g vs (6.43±0.59) g, t=14. 73, P〈0.05]. The incidence of FGR in low-protein group was 88. 2% (97/110); and for male offsprings, it was 94. 1% (48/ 51). (2) Compared to normal offsprings, fasting plasma glucose levels of male FGR offsprings were significantly higher from the age of 60 days to 90 days. Insulin levels and insulin resistance index were significantly higher and insulin sensitivity index was lower from the age of 30 days to 90 days, P〈0.05 respectively. (3) Compared to normal offsprings, IRS1 (0. 45 ± 0.02 vs 0. 68 ± 0.03, t= 16. 633, P〈 0. 05) and IRS2 mRNA (0.34±0. 10 vs 0. 70±0.19, t=4. 864, P〈0.05) expressions in FGR offsprings were lower from day 7 after birth to day 90 (0. 48±0.03 vs 0.59±0. 05, t=5. 237, P〈0. 05; 0. 49±0. 20 vs 0. 70±0. 11, t=2. 253, P〈0. 05). There were no differences in expressions of GLUT4 mRNA and AKT protein between two groups (P 〉 0. 05). IRS1, PI3-K and pAKT protein expressions of FGR offsprings decreased significantly from day 14 (0. 22±0. 05 vs 0. 52±0.11, t=7. 024, P〈0.05; 0. 46± 0.03 vs 0. 97±0.08, t=lT. 508, P〈0.05; 0. 6±0. 10 vs 0.89±0.08, t=6. 100, P〈0. 05) to day 90 (1.11±0.08 vs 1.32±0.14, t=3.714, P〈0.05; 0.63±0.07 vs 1.00±0.19, t=5.206, P〈0.05; 0.28±0. 03 vs 0. 45±0.10, t=4. 880, P〈0. 05). (4) The pAKT protein expression level of FGR rats was positively correlated with insulin sensitivity index (r= 0. 704, P〈0.05) ; while negatively correlated to the level of fasting plasma glucose (r=-0. 609, P〈0.05), fasting insulin (r= -0. 561, P〈0.05) and insulin resistance index (r=-0. 577, P〈0. 05). Conclusions The changes of some key molecules' expressions of PI3-K/AKT pathway in liver might be involved in the insulin resistance in FGR rats.
出处 《中华围产医学杂志》 CAS 北大核心 2012年第12期743-749,共7页 Chinese Journal of Perinatal Medicine
基金 国家自然科学基金(30901614) 教育部博士点基金(20070001787)
关键词 胎儿生长迟缓 胰岛素抗药性 1-磷脂酰肌醇3-激酶 原癌基因蛋白质c-akt 疾病模型 动物 Fetal growth retardation Insulin resistance 1-Phosphatidylinositol 3-kinase Proto-oncogene proteins e-akt Liver Disease models, animal
  • 相关文献

参考文献25

  • 1Finken M], Keijzer- Veen MG, Dekker FW, et al. Preterm birth and later insulin resistance: effects of birth weight and postnatal growth in a population based longitudinal study from birth into adult life. Diabetologia , 2006, 49:478-485.
  • 2Rotteveel], van Weissenbruch MM, Twisk]W, et al. Insulin sensitivity in prematurely born adults: relation to preterm growth restraint. Horm Res Paediatr , 2011, 75: 252-257.
  • 3Feng XT, Wang TZ, Leng], et al. Palmitate contributes to insulin resistance through downregulation of the Src-mediated phosphorylation of Akt in C2C12 myotubes. Biosci Biotechnol Biochern , 2012, 76: 1356-136l.
  • 4Wei Z, Peterson]M, Lei X, et al. C1q/TNF-related protein- 12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes.] Bioi Chern, 2012, 287:10301-10315.
  • 5Hashikawa-Hobara Ns Hashikawa Nv Inoue Yv er al. Candesartan cilexetil improves angiotensin II type 2 receptor-mediated neurite outgrowth via the PI3K-Akt pathway in fructose-induced insulin?resistant rats. Diabetes, 2012, 61: 925-932.
  • 6Shen XX, Li HL, Pan L, et al. Glucotoxicity and a cell dysfunction: involvement of the PI3K/ Akt pathway in glucose-induced insulin resistance in rat islets and clonal aTCl-6 cells. Endocr Res, 2012, 37: 12-24.
  • 7Zhu S, Sun F, Li W, et al. Apelin stimulates glucose uptake through the PI3K/ Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochern , 2011, 353: 305-313.
  • 8Zeng XQ, Zhang CM, Tong ML, et al. Knockdown of NYGGF4 increases glucose transport in C2C12 mice skeletal myocytes by activation IRS-1/PI3K/ AKT insulin pathway.J Bioenerg Biornembr , 2012, 44: 351-355.
  • 9Gallagher E], Fierz Y, Vijayakumar A, et al. Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene, 2012, 31: 3213-3222.
  • 10李瑶,辛颖.宫内发育迟缓大鼠胰腺肝脏骨骼肌中胰岛素受体底物的表达[J].中国循证儿科杂志,2011,6(3):225-229. 被引量:5

二级参考文献48

  • 1应艳琴,罗小平.小于胎龄儿生长相关异常及生长激素治疗[J].临床儿科杂志,2004,22(8):559-561. 被引量:9
  • 2范子田,杨慧霞.妊娠期营养不良对后代的远期影响[J].中华围产医学杂志,2005,8(4):278-281. 被引量:47
  • 3Ozanne SE, Fernandez-Twinn D, Hales CN. Fetal growth and adult diseases. Semin Perinatol, 2004,28 : 81-87.
  • 4Zarieh SW. Metabolic syndrome, diabetes and cardiovascular events: current controversies and recommendations. Minerva Cardioangiol, 2006,54:195-214.
  • 5Desai M, Gayle D, Babu J, et al. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol, 2005,288 : R91-R96.
  • 6Mattews DR, Hosker JP, Rudenskia AS, et al.Homeostasis mode assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985,28:412-419.
  • 7Gavete ML, Martin MA, Alvarez C, et al. Maternal food restriction enhances insulin-induced GLUT-4 translocation and insulin signaling pathway in skeletal muscle from suckling rats. Endocrinology, 2005, 146:3368-3378.
  • 8Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25: 402-408.
  • 9Thamotharan M, McKnight RA, Thamotharan S, et al. Aberrant insulin-induced GLUT4 translocation predicts glucose intolerance in the offspring of a diabetic mother. Am J Physiol Endocrinol Metab, 2003,284 : E901-E914.
  • 10Barker DJ. The developmental origins of adult disease. J Am Coll Nutr, 2004, 23 : s588-s595.

共引文献13

同被引文献30

  • 1罗开菊,陈平洋,谢宗德,李雯,李素萍,贺鸣凤.宫内发育迟缓对大鼠肝糖异生关键酶的影响[J].中南大学学报(医学版),2014,39(4):395-400. 被引量:1
  • 2Szostak-Wegierek D, Szamotulska K. Fetal development and risk of cardiovascular diseases and diabetes type 2 in adult life [ J ]. Med Wieku Rozwoj, 2011, 15(3) : 203 -215.
  • 3Park JH, Stoffers DA, Nicholls RD, et al. Development of type 2 diabetes following intrauterine growth retardation in rats is associa- ted with progressive epigenetic silencing of Pdxl [ J]. J Clin In- vest, 2008, 118(6) : 2316 -2324.
  • 4Rueda-Clausen CF, Dolinsky VW, Morton JS, et al. Hypoxia-in- duced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced metabolic syndrome [ J ]. Diabetes, 2011, 60(2): 507-516.
  • 5Owens JA, Gafford KL, De Blasio MJ, et M. Restriction of pla- cental growth in sheep impairs insulin secretion but not sensitivity before birth [J]. J Physiol, 2007, 58g(Pt 3) : 935 -949.
  • 6Martin-Gronert MS, Tarry-Adkins JL, Cripps RL, et al. Maternal protein restriction leads to early life alterations in the expression of key molecules involved in the aging process in rat offspring [ J ]. Am J Physiol Requl Inteqr Comp Physiol, 2008, 294 (2): R494 - R500.
  • 7Li WC, Ralphs KL, Tosh D. Isolation and culture of adult mouse hepatocytes [J]. Methods Mol Biol, 2010, 633:185 -196.
  • 8Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study [ J]. J Cell Biol, 1969, 43(3): 506-520.
  • 9Schmidt M, Sehmitz H J, Baumgart A, et al. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture [J]. Food Chem Toxieol. 2005. 43(2) , 307 -314.
  • 10Zhang HJ, Ji BP, Chen G, et al. A combination of grape seed-de- rived procyanidins and gypenosides alleviates insulin resistance in mice and HepG2 cells [J]. J Food Sci, 2009, 74(1) : H1 -H7.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部