期刊文献+

基于信息增益的特征选择算法在语音识别系统中的应用

Information Gain Based Feature Selection Algorithm Application in the Speech Recognition System
下载PDF
导出
摘要 在语音识别系统中,往往需要对输入的语音信息进行数据预处理操作,删除冗余的、不相关的特征值。针对传统应用于语音系统中特征选择算法中出现的效率低、错误率高的缺点,本文提出了基于信息增益的特征选择算法。该算法通过信息增益评价指标对属性进行排名及评价,选择最优的特征属性并删除无用的属性。通过大量的对比实验结果表明,本文提出的算法可以高效地完成特征选择语音数据预处理,并且提出的新算法与传统的特征选择算法选择出的特征属性应用在语音识别算法后能够更准确地识别和判断语音信息。 In the speech recognition system,we often pre-process the input speech information,and delete the redundant or irrelevant features.Focusing on disadvantages of traditional feature selection algorithms,such as low efficiency and high error rate,we propose a feature selection algorithm based on information gain in this paper.This algorithm could evaluate and rand the features according to the information gain metric,select the best features,and delete the useless attributes.The experimental results show that the algorithm proposed by this paper could complete the feature selection work in speech pro-process.Besides,the features selected by the new algorithm could recognize and judge speech information more accurately comparing with the traditional algorithms,when they apply into the speech recognition system.
作者 孙赢
机构地区 苏州市职业大学
出处 《科技通报》 北大核心 2012年第12期185-187,共3页 Bulletin of Science and Technology
关键词 信息增益 特征选择算法 语音识别 information gain feature selection algorithm speech recognition
  • 相关文献

参考文献8

  • 1计智伟,胡珉,尹建新.特征选择算法综述[J].电子设计工程,2011,19(9):46-51. 被引量:46
  • 2A Y Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance[C]//.ICML, 2004.
  • 3Yu L, Liu H.Feature selection for high-dimensional data: A fast correlation-based filter solution[C]//.Proceedings of the Twentieth International Conference on Machine Learn- ing(ICnL 2003). 2003(20):856.
  • 4Singh S,Kubica J,Larsen S.Parallel large scale feature election for logistic regression [C]//. Society for Industrial and Applied Mathematics 2009:1171- 1182.
  • 5Sun Z H, Bebis G, Miller R. Object detection using fea- ture subset selection [J]. Pattern Recongnition, 2004, 37 (11):2165-2176.
  • 6Jain A K, Duin R D W, Mao J C. Statistical pattern recog- nition [J]. A review. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22(1):4-37.
  • 7Huang Chenn-jung,Yang Dian-xiu, Chuang Yi-ta. Appli- cation of wrapper approach and composite classifier to the stock trend prediction [J]. Expert Systems with Applica- tion. 2008,4(34):2870-2878.
  • 8王权,施韶亭.Web信息抽取技术在统一检索系统中的应用研究[J].计算机应用与软件,2010,27(10):120-122. 被引量:7

二级参考文献53

  • 1薛亮,冯博琴,管涛.网络跨库检索中基于Ontology的数据抽取与合并[J].小型微型计算机系统,2005,26(10):1807-1809. 被引量:2
  • 2陈琼,苏文健.基于网页结构树的Web信息抽取方法[J].计算机工程,2005,31(20):54-55. 被引量:24
  • 3曹方,施韶亭.基于Web过程模拟的异构数字文献统一检索系统设计与实现[J].情报学报,2006,25(5):575-579. 被引量:11
  • 4Laender A,Ribeiro-neto B,Silva A.A brief survey of Web data extraction Tools[J].SIGMOD Record,2002,31(2):84-93.
  • 5Grishman R.Adaptive Information Extraction and Sublanguage Analysis[C]//IJCAI-2001 Workshop on Adaptive Text Extraction and Mining.Washington,USA,2001:166-175.
  • 6Atzeni P,Mecca G,Merialdo P.To weave the web[C]//Proceedings of 23rd International Conference on Very Large Databases.Greece:Morgan Kaufmann,1997:206-215.
  • 7Dave Raggett.HTML Tidy Project Page[EB/OL].[2008-04-01].http://tidy.sourceforge.net.
  • 8Gaizauskas R,Wilks Y.Information Extraction:Beyond Document Retrieval[J].Computational Linguistics and Chinese Language Processing,1998,3 (2):17-60.
  • 9甘肃科技文献资源共享平台[EB/OL].[2008-04-01].http://www.gsstd.cn.
  • 10青海科技文献资源共享平台[EB/OL].[2008-04-01].http://www.textqh.com.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部