期刊文献+

基于要素提取关联词对的中文报道关系检测 被引量:2

Chinese story link detection based on extraction of elements correlative word
下载PDF
导出
摘要 针对现有中文报道关系检测的检测代价即误报率和丢失率较高的问题,在多向量空间模型基础上提取不同向量的要素(时间、地点、人物和内容)特征词组成关联词对,使用支持向量机(SVM)方法整合关联词对相似度和余弦相似度,从而提出了一种提取要素关联词对报道关系检测方法。所提方法补充表示了报道内容,为检测提供了更多的比较依据,识别代价降低了将近11%。实验结果验证了算法的有效性。 At present, the cost of Chinese story link detection is high, since the miss rate and false rate are high. Concerning this problem, based on multi-vector space model, the paper joined elements ( time, site, people, content) correlative word to represent the relevance of the different elements, integrated coherence similarity and cosine similarity with Support Vector Machine (SVM), and then proposed an algorithm which was based on the extraction of elements correlative word. The proposed algorithm complementally expressed the story and provided more evidence for detection; the detection cost was decreased by nearly 11%. Finally, the experimental results show the validity of the proposed algorithm.
出处 《计算机应用》 CSCD 北大核心 2013年第1期182-185,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61063032) 广西自然科学基金资助项目(2012GXNSFAA053225)
关键词 报道关系识别检测 关联词对 报道要素 多向量空间模型 story link detection correlative word story elements multi-vector space model
  • 相关文献

参考文献13

二级参考文献64

共引文献88

同被引文献30

  • 1贾自艳,何清,张海俊,李嘉佑,史忠植.一种基于动态进化模型的事件探测和追踪算法[J].计算机研究与发展,2004,41(7):1273-1280. 被引量:58
  • 2赵华,赵铁军,于浩,张姝.面向动态演化的话题检测研究[J].高技术通讯,2006,16(12):1230-1235. 被引量:17
  • 3Allan J. Introduction to topic detection and tracking//Allan J ed. Topic Detection and Tracking. New York, USA: Springer US, 2002: 1-16.
  • 4Fiscus J G, Doddington G R. Topic detection and tracking evaluation overview//Allan J ed. Topic Detection and Tracking. New York, USA: Springer US, 2002: 17-31.
  • 5Kaur K, Gupta V. A survey of topic tracking techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 5(2): 383-392.
  • 6Mohd M, Crestani F, Ruthven I. Evaluation of an interactive topic detection and tracking interface. Journal of Information Science, 2012, 38(4): 383-398.
  • 7Pons-Porrata A, Berlanga-Llavori R, Ruiz-Shuleloper J. Topic discovery based on text mining techniques. Information Processing: Management, 2007, 43(3): 752-768.
  • 8Aggarwal C C, Zhai C X. A survey of text classification algorithms//Aggarwal C C, Zhai C X eds. Mining Text Data. New York, US: Springer US, 2012: 163-222.
  • 9Gohr A, Spiliopoulou M, Hinneburg A. visually summarizing semantic evolution in document streams with topic table// Fred Ana ed. Knowledge Discovery, Knowledge Engineering and Knowledge Management. Heidelberg, Germany: Springer Berlin Heidelberg, 2013:136-150.
  • 10Mimno D, Blei D. Bayesian checking for topic models// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA, 2011:227-237.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部