期刊文献+

基于符号化聚合近似的时间序列相似性复合度量方法 被引量:7

Composite metric method for time series similarity measurement based on symbolic aggregate approximation
下载PDF
导出
摘要 基于关键点的符号化聚合近似(SAX)改进算法(KP_SAX)在SAX的基础上利用关键点对时间序列进行点距离度量,能更有效地计算时间序列的相似性,但对时间序列的模式信息体现不足,仍不能合理地度量时间序列的相似性。针对SAX与KP_SAX存在的缺陷,提出了一种基于SAX的时间序列相似性复合度量方法。综合了点距离和模式距离两种度量,先利用关键点将分段累积近似(PAA)法平均分段进一步细分成各个子分段;再用一个包含此两种距离信息的三元组表示每个子分段;最后利用定义的复合距离度量公式计算时间序列间的相似性,计算结果能更有效地反映时间序列间的差异。实验结果显示,改进方法的时间效率比KP_SAX算法仅降低了0.96%,而在时间序列区分度性能上优于KP_SAX算法和SAX算法。 Key point-based Symbolic Aggregate approximation (SAX) improving algorithm (KP SAX) uses key points to measure point distance of time series based on SAX, which can measure the similarity of time series more effectively. However, it is too short of information about the patterns of time series to measure the similarity of time series reasonably. To overcome the defects, a composite metric method of time series similarity measurement based on SAX was proposed. The method synthesized both point distance measurement and pattern distance measurement. First, key points were used to further subdivide the Piecewise Aggregate Approximation (PAA) segments into several sub-segments, and then a triple including the information about the two kinds of distance measurement was used to represent each sub-segment. Finally a composite metric formula was used to measure the similarity between two time series. The calculation results can reflect the difference between two time series more effectively. The experimental results show that the proposed method is only 0.96% lower than KP_SAX algorithm in time efficiency. However, it is superior to the KP_ SAX algorithm and the traditional SAX algorithm in differentiating between two time series.
作者 刘芬 郭躬德
出处 《计算机应用》 CSCD 北大核心 2013年第1期192-198,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61070062 61175123) 福建高校产学合作科技重大项目(2010H6007)
关键词 时间序列 符号化聚合近似 相似性 模式距离 复合度量 time series Symbolic Aggregate approximation (SAX) similarity pattern distance composite metric
  • 相关文献

参考文献11

  • 1李桂玲,王元珍,杨林权,吴湘宁.基于SAX的时间序列相似性度量方法[J].计算机应用研究,2012,29(3):893-896. 被引量:14
  • 2AGRAWAL R, FALOUTSOS C, SWAMI A N. Efficient similarity search in sequence databases [ C]// Proceedings of the 4th Interna- tional Conference on Foundations of Data Organization and Algo- rithms. Berlin: Springer, 1993:69-84.
  • 3LIN J, KEOGH E, LONARDI S, et al. A symbolic representation of time series, with implications for streaming algorithms [C]// Proceed- ings of the 8th SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. New York: ACM Press, 2003: 2-11.
  • 4KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionali- ty reduction for fast similarity search in large time series databases [ J]. Knowledge and Information Systems, 2001, 3(3): 263-286.
  • 5SHIEH J, KEOGH E. iSAX: disk-aware mining and indexing of massive time series datasets [ J]. Data Mining and Knowledge Dis- cnvery, 2009, 19(1): 24-57.
  • 6CAMERA A, PALPANAS T, SHIEH J, et al. iSAX 2.0: indexing and mining one billion time series [ C]// Proceedings of the lOth IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2010:58 -67.
  • 7陈湘涛,李明亮,陈玉娟.基于分割模式的时间序列矢量符号化算法[J].计算机工程,2011,37(4):55-57. 被引量:6
  • 8同秋艳,孟凡荣.一种基于关键点的SAX改进算法[J].计算机研究与发展,2009,46(z2):483-490.
  • 9刘威,邵良杉,曾繁慧,王江,付巍巍.基于SAX方法的股票时间序列数据相似性度量方法研究[J].计算机工程与科学,2009,31(9):115-118. 被引量:9
  • 10朱天,白似雪.基于模式距离度量的时间序列相似性搜索[J].微计算机信息,2007,23(30):216-217. 被引量:8

二级参考文献37

共引文献44

同被引文献63

  • 1尹达,刘锋报,康毅力,郭斌,罗威,王涛,晏智航.库车山前盐膏层钻井液漏失成因类型判定[J].钻采工艺,2019,42(5):121-123. 被引量:12
  • 2黄河,史忠植,郑征.基于形状特征k-d树的多维时间序列相似搜索[J].软件学报,2006,17(10):2048-2056. 被引量:11
  • 3张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274. 被引量:36
  • 4喻高瞻,彭宏,胡劲松,郑启伦.时间序列数据的分段线性表示[J].计算机应用与软件,2007,24(12):17-18. 被引量:19
  • 5AGRAWAL R, SRIKANT R. Mining sequential patterns [C]// ICDE '95: Proceedings of the 11th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1995: 3-14.
  • 6RATANAMAHATANA C A, LIN J, GUNOPULOS D, et al. Data Mining and Knowledge Discovery Handbook [M]. Berlin: Springer, 2005: 1069-1103.
  • 7HAN J, DONG G, YIN Y. Efficient mining of partial periodic patterns in time series database [C]// Proceedings of the 1999 15th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1999: 106-115.
  • 8SIRISHA G N V G, SHASHI M, RAJU G V P. Periodic pattern mining—algorithms and applications [EB/OL]. [2015-12-04]. http://globaljournals.org/GJCST_Volume13/4-Periodic-Pattern-Mining-Algorithms.pdf.
  • 9YU X, YU H. An asynchronous periodic sequential patterns mining algorithm with multiple minimum item supports [C]// Proceedings of the 2014 9th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Washington, DC: IEEE Computer Society, 2014: 274-281.
  • 10AMIR A, APOSTOLICO A, EISENBERG E, et al. Detecting approximate periodic patterns [C]// Proceedings of the 1st Mediterranean Conference on Design and Analysis of Algorithms. Berlin: Springer, 2012: 1-12.

引证文献7

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部