期刊文献+

压缩感知的量化率失真分析 被引量:1

Rate-distortion analysis for quantizing compressive sensing
下载PDF
导出
摘要 压缩感知理论表明稀疏信号能由少量的随机测量值恢复,从信息理论的角度来看,随机测量值能否有效表示稀疏信号仍是一个值得探讨的问题。针对压缩感知测量值的量化,将率失真理论作为工具研究压缩测量值的量化带来的平均失真度,包括均匀量化和非均匀量化两种情况,并进一步得到由量化测量值重构信号的率失真性能极限。理论分析和实验结果表明,相对于信号的自适应编码随机观测过程会引起较大的失真,但是压缩感知能利用信号的稀疏度来减小量化后的重构失真,这说明量化压缩感知适用于低稀疏度的信号。 Recent studies in Compressive Sensing (CS) have shown that sparse signals can be recovered from a small number of random measurements, which raises the question of whether random measurements can provide an efficient representation of sparse signals in an information-theoretic sense. To examine the influence of quantization errors, the average distortion introduced by quantizing compressive sensing measurements was studied using rate distortion theory. Both uniform quantization and non-uniform quantization were considered. The asymptotic rate-distortion functions were obtained when the signal was recovered from quantized measurements using different reconstruction algorithms. Both theoretical and experimental results shows that encoding a sparse signal through simple scalar quantization of random measurements incurs a significant penalty relative to direct or adaptive encoding of the sparse signal, but compressive sensing is able to exploit the sparsity to reduce the distortion, so quantized compressive sampling is suitable to be used to encode the low sparse signal.
出处 《计算机应用》 CSCD 北大核心 2013年第1期295-298,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60872064)
关键词 压缩感知 量化 率失真函数 有损压缩 信号重构 Compressive Sensing (CS) quantization rate distortion function lossy compression signal reconstruction
  • 相关文献

参考文献12

  • 1DONOHO D. Compressed sensing [ J]. IEEE Transactions on Infor- mation Theory, 2006, 52(4) : 1289 - 1306.
  • 2CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informa- tion [ J]. IEEE Transactions on Information Theory, 2006, 52( 2): 489 - 509.
  • 3DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction [ J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
  • 4CANDES E, ROMBERG J. Encoding the lp ball from limited meas- urements [ C]//Proceedings of the 2006 Data Compression Confer- ence. Washington, DC: IEEE Computer Society, 2006:33-42.
  • 5BOUFOUNOS P, BARANIUK R. Quantization of sparse representa- tions [ C] // Proceedings of the 2007 Data Compression Conference. Washington, DC: IEEE Computer Society, 2007:378-378.
  • 6GOYAL V, FLETCHER A, RANGAN S. Compressive sampling and lossy compression [ J]. IEEE Signal Processing Magazine, 2008, 25(2): 48-56.
  • 7CANDES E, ROMBERG J, TAO T. Stable signal recovery from in- complete and inaccurate measurements [ J]. Communications on Pure and Applied Mathematics, 2006, 59(8) : 1207 - 1223.
  • 8DAI WEI, MILENKOVIC O. Information theoretical and algorithmic approaches to quantized compressive sensing [ J]. IEEE Transac- tions on Communications, 2011, 59(7) : 1857 - 1866.
  • 9BOUFOUNOS P. Reconstruction of sparse signals from distorted ran- domized measurements [ C]//International Conference on Acoustics Speech and Signal Processing. Piscataway: IEEE Press, 2010: 3998 - 4001.
  • 10TROPP J, NEEDELL D, VERSHYNIN R. Iterative signal recovery from incomplete and inaccurate measurements [ J]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321.

同被引文献13

  • 1谢勍,谢建全.一种基于奇异值分解的改进图像水印算法[J].计算机工程与科学,2007,29(11):40-42. 被引量:9
  • 2AWRANGJEB M. An overview of reversible data hiding [ C ]. Proc of ICCIT - 2003, Bangladesh,2003.
  • 3LINE T, DELP E J. Temporal synchronization in video watermarking[ J ]. IEEE Trans Signal Process,2004, 52 (10) : 3007 - 3022.
  • 4DAZHI Z, BOYING W, JIEBAO S, et al. A new robust watermarking algorithm based on dwt[ C]// 2nd Interna- tional Congress on Image and Signal Processing, 2009:1 --6.
  • 5WU C P,JAY K C, Design of Integrated multimedia com- pression and cncryption systems[ J]. IEEE Trans on Mul- timedia, 2005,7 ( 5 ) : 828 - 839.
  • 6CANDES E, ROMBERG J, TERENCE Tao. Robust un- certainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans On Information Theory ,2006, 52 (2) :489 - 509.
  • 7DONOHO D L, TSAIG Y. Extensions of compressed sensing [ J ]. Signal Processing, 2006,86 ( 3 ) : 533 - 548.
  • 8MUN S, FOWLER J E. Block compressed sensing of images using directional transforms [ C ]//Proceedings of the International Conference on Image Processing, Cai- ro, Egypt, 2009 : 3021 - 3024.
  • 9DO T T, TRAN T D, GAN L. Fast compressive sam- piing with structurally random matrices [ C ] //Proceed- ings of the International Conference on Acoustics, Speech, and Signal Processing,2008:3369-3372.
  • 10ALl AL-HAJ. Combined DWT-DCT digital image water- marking[ J]. journal of Computer Science , 2007, 3 (9) : 740 - 746.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部