期刊文献+

具有广义Hukuhara导数的模糊微分系统的近似解 被引量:1

Approximate solutions of fuzzy differential systems under generalized Hukuhara derivative
下载PDF
导出
摘要 利用广义Hukuhara导数研究了一阶模糊线性微分系统的模糊初值问题,将一阶模糊线性微分系统转化成2n个等价的分明线性微分系统,给出了模糊初值问题近似解析解的微分变换解法;给出了具体算例。 The first order fuzzy linear differential system with fuzzy initial value problem is studied under generalized Hukuhara derivative, the first order fuzzy linear differential system can be translated into 2" crisp linear differential system, the approxi-mate analytical solutions of fuzzy initial value problems are obtained by using differential transformation method, and one example is provided.
作者 王磊 郭嗣琮
出处 《计算机工程与应用》 CSCD 2013年第1期7-9,18,共4页 Computer Engineering and Applications
基金 高等学校博士点学科点专项科研基金(No.20102121110002)
关键词 模糊线性微分系统 广义Hukuhara导数 微分变换解法 fuzzy linear differential system generalized Hukuhara derivative differential transformation method
  • 相关文献

参考文献15

  • 1Wu C X, Song S J.Existence and uniqueness of solutions to the Cauchy problem of fuzzy differential equations[J]. Fuzzy Sets and Systems,2000,110:55-67.
  • 2Nieto J J, Rodriguez-Lopez R, Franco D.Linear first-order fuzzy differential equations[J].Intemational Journal of Uncer- tainty Fuzziness Knowledge-Based Systems,2006,14:687-709.
  • 3Misukoshi M, Chalco-Cano Y, Roman-Flores H, et al.Fuzzy differential equations and the extension principle[J].Informa- tion Sciences, 2007,177 : 3627-3635.
  • 4王磊,郭嗣琮.一阶线性模糊微分方程的解[J].模糊系统与数学,2011,25(3):113-118. 被引量:9
  • 5王磊,郭嗣琮.线性生成的完全模糊线性微分系统[J].系统工程理论与实践,2012,32(2):341-348. 被引量:8
  • 6Chang S L, Zadeh L A.On fuzzy mapping and control[J].IEEE Transactions on Systems Man Cybernetics, 1972, 2: 330-340.
  • 7Dubois D,Prade H.Towards fuzzy differential calculus:part 3,differentiation[J].Fuzzy Sets and Systems, 1982,8:225-233.
  • 8Bede B,Gal S G.Almost periodic fuzzy-number-valued func- tions[J].Fuzzy Sets and Systems, 2004,147 (3) : 385-403.
  • 9Bede B,Rudas I J,Bencsik A L.First order linear fuzzy dif- ferential equations under generalized differentiability[J].Infor- mation Sciences,2007,177(7) : 1648-1662.
  • 10王磊,郭嗣琮,李娜.具有推广Hukuhara导数的模糊微分方程的数值解[J].计算机工程与应用,2012,48(2):56-58. 被引量:5

二级参考文献53

共引文献16

同被引文献16

  • 1郭嗣琮,苏志雄,王磊.模糊分析计算中的结构元方法[J].模糊系统与数学,2004,18(3):68-75. 被引量:50
  • 2吴强,熊志刚.基于龙格—库塔方法的一阶微分方程组的初值问题[J].数学理论与应用,2006,26(3):94-97. 被引量:8
  • 3喻小军,谭建.企业集群的生态系统竞合模型[J].系统工程,2007,25(7):108-111. 被引量:16
  • 4Seikkala S, Vorobiev D. Towards the theory of fuzzy differential equations[J], lqlzzy Sets and Systems, 2002, 125: 231- 237.
  • 5Buckley J J, Feuring T, hayashi Y. Linear system of first order ordinary differential equations: Fuzzy initial equation[J]. Soft Computing, 2002, 6: 415-421.
  • 6Xu J P, Liao Z G, Hu Z N. A class of linear differential dynamical systems with fuzzy initial condition[J]. Fuzzy Sets and Systems, 2007, 157:2339 -2358.
  • 7Xu J P, Liao Z G, Nieto J J. A class of linear differential dynamical systems with fuzzy matrices[J]. Journal of Mathematical Analysis and Applications, 2010, 368: 54-68.
  • 8Ghazanfari B, Niazi S, Ghazanfari A G. Linear matrix differential dynamical systems with fuzzy matrices[J]. Applied Mathematical Modelling, 2012, 36(1): 348-356.
  • 9Fard O S, Chal-Eh N. Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients[J]. Information Sciences, 2011, 181:4765 -4779.
  • 10Hashemi M S, Malekinagad J, Marasi H R. Series solution of the system of fuzzy differential equations[J]. Advances in Fuzzy Systems, 2012, doi: 10.1155/2012/407647.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部