期刊文献+

“当前”半马尔科夫模型及自适应跟踪算法 被引量:2

“Current” half a Markov model and adaptive tracking algorithm
下载PDF
导出
摘要 通过分析基于"当前"统计模型的自适应卡尔曼滤波算法的不足之处,在"当前"统计模型的基础上引入空气阻力系数和非零加速度,提出了"当前"半马尔可夫统机动模型,从而更符合机动目标运动的实际情况;基于此模型提出了改进的自适应卡尔曼滤波算法。仿真结果表明,改进的"当前"半马尔可夫卡尔曼滤波算法收敛速度更快,跟踪误差更小。 Through the analysis of the "current" statistical model based on adaptive Kalman filtering algorithm deficiency, in the "current" statistical model on the basis of the air resistance coefficient and nonzero acceleration, this paper proposes "current" semi-Markovian series motor model, the model is more in line with the actual conditions of maneuvering target. Based on this model, it puts forward some improvement adaptive Kalman filter. The simulation results show that the improved "current" semi-Markovian Kalman filtering algorithm convergence speed is faster, and state estimation is more precise.
作者 刘连宇 舒勤
出处 《计算机工程与应用》 CSCD 2013年第1期128-130,162,共4页 Computer Engineering and Applications
关键词 机动目标跟踪 “当前”统计模型 CS-Kalman算法 maneuvering target tracking "current" statistical model CS-Kalman algorithm
  • 相关文献

参考文献9

  • 1Zhou H,Kumar K S P.A"current"statistical model and adap- tive algorithm for estimating maneuvering targets[J].AIAA Journal of Guidance, 1984,7( 5 ) : 596-602.
  • 2Singer R A.Estimating optimal tracking filter performance for manned maneuvering targcts[J].IEEE Trans on Aero- space and Electronic Systems, 1970,6(7) : 473-483.
  • 3刘海燕,赵宗贵,刘熹,巴宏欣.一种机动目标的自适应跟踪算法[J].武汉理工大学学报(交通科学与工程版),2007,31(2):341-344. 被引量:4
  • 4刘建书,何亚娟,王小永,武小舟,杨娜.模糊自适应机动目标跟踪算法[J].弹箭与制导学报,2010,30(4):8-10. 被引量:6
  • 5Mehrotra K, Mahapatra P R.A jerk model for tracking highly maneuvering targets[J].IEEE Trans on Aerospace and Elec- tronic Systems, 1997,33(4) : 1094-1105.
  • 6LiX R, JilkovV P.A survey of maneuvering target tracking- part II:Ballistic target models[C]//Proceedings of the Confer- ence on Signal and Data Processing of Small Targets, CA, 2001,4473 (7/8) :559-581.
  • 7LiX R, JilkovV RA survey of maneuvering target tracking- part III.Measurement models[C]//Proceedings of the Confer- ence on Signal and Data Processing of Small Targets, CA, 2001,4473(7/8) :423-446.
  • 8Julier S J, Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[J].SPIE, 1997,3068 :182-193.
  • 9Julier S J, Uhlmann J K.The scaled unscented transformation[C]// Proceedings of The American Control Conference, Anchor- age, 2002.

二级参考文献9

共引文献7

同被引文献31

  • 1赵宏伟,陈霄,龙曼丽,袁世培.基于改进PLSA分类器的目标分类算法[J].吉林大学学报(工学版),2012,42(S1):231-235. 被引量:2
  • 2崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 3黄士科,陶琳,张天序.一种改进的基于光流的运动目标检测方法[J].华中科技大学学报(自然科学版),2005,33(5):39-41. 被引量:17
  • 4杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 5Tian Y,Ekici E,Ozguner F. Energy-constrained task mappingand scheduling in wireless sensor networks. Proc. of theIEEE International Conference on Mobile Adhoc and SensorSystems Conference. IEEE. 2005,8. 215-218.
  • 6Lin J, Xiao W, Lewis FL, et al. Energy-efficient distributedadaptive multisensor scheduling for target tracking in wirelesssensor networks. IEEE Trans, on Instrumentation andMeasurement, 2009,58(6): 1886-1896.
  • 7Mo Y, Garone E, Casavola A,et al. Stochastic sensorscheduling for energy constrained estimation in multi-hopwireless sensor networks. IEEE Trans, on Automatic Control,2011,56(10): 2489-2495.
  • 8Lin K, Xu T, Hassan M M,et al. An energy-efficiency nodescheduling game based on task prediction in WSNs. MobileNetworks & Applications, 2015, 20(5): 583-592.
  • 9Nayebi-Astaneh A,Pariz N, Naghibi-Sistani MB. Adaptivenode scheduling under accuracy constraint forwireless sensornodes with multiple bearings-only sensing units. IEEE Trans,on Aerospace & Electronic Systems, 2015,51(2): 1547-1557.
  • 10Rodrigues P, Oliveira A, Alvarez F, et al. Space wirelesssensor networks for planetary exploration: Node and networkarchitectures. Proc. of the 2014 NASA/ESA Conference onAdaptive Hardware and Systems (AHS). IEEE. 2014.180-187.

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部