期刊文献+

使用二分图邻接矩阵的压缩传感图像快速重建 被引量:2

Fast reconstruction for compressive sensing image using adjacency matrix of bipartite graph
下载PDF
导出
摘要 针对压缩传感中高维投影计算采用稀疏性较差的普通随机测量矩阵,从而导致计算复杂度高,重构性能不佳这一难题,提出一种基于二分图邻接矩阵的压缩传感图像快速重建算法。该算法在满足测量矩阵的RIP条件下,充分利用二分图邻接矩阵的稀疏性与二值性,将时间复杂度由传统算法的O(N·logN)降低至O(N)。实验结果表明,算法在保证图像重构质量情况下大大提高了运算性能,尤其对于色彩(灰度)变化平缓图像,该算法性能更加优越。 Random measurement matrix with low sparsity adopted in projections of high-dimensional data onto low-dimensional subspaces in compressive sensing theory has demerits of high computation complexity and low quality reconstructed image. A fast reconstruction algorithm of compressive sensing image based on adjacency matrix of bipartite graph is proposed. Based on the condition of satisfying RIP (Restricted Isoetry Property), the proposed algorithm makes full use of sparsity and intrinsic fea- tures of adjacency matrix of bipartite graph to achieve decrease of time complexity from 0 (N. log N) in traditional algorithms to O(N). Experiments demonstrate the proposed algorithm further improves computational performance as well as obtains high reconstructed image quality, especially for images with smooth changes of color or intensity.
出处 《计算机工程与应用》 CSCD 2013年第1期191-194,205,共5页 Computer Engineering and Applications
基金 湖南省自然科学基金重点项目(No.08JJ3131) 湖南省教育厅重点项目(No.10A076)
关键词 压缩传感 量测矩阵 二分图 邻接矩阵 稀疏矩阵 compressive sensing sensing matrix bipartite graph adjacency matrix sparse matrix
  • 相关文献

参考文献13

  • 1Candes E J, Romberg J, Tao T.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006,52(2) :489-509.
  • 2Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4) : 1289-1306.
  • 3Donoho D, Tsaig Y.Extensions of compressed sensing[J]. Signal Processing, 2006,86(3 ) : 549-571.
  • 4Candes E J, Tao T.Near-optimal signal recovery from ran- dom projections and universal encoding strategies[J].IEEE Transactions on Information Theory, 2006,52(12) : 5406-5425.
  • 5Candes E J, Romberg J.The role of sparsity and incoher- ence for exactly reconstructing a signal from limited mea- surements[R].California Institute of Technology,2004.
  • 6Baraniuk R G,Davenport M,DeVore R, et al.The Johnson- Lindenstrauss lemma meets compressed sensing[EB/OL].(2006) [2011-03-01].http ://dsp.rice.edu/cs/jlcs-vO3.pdf.
  • 7Donoho D L, Stark P B.Uncertainty principles and signal recovery[J].SIAM Journal oa Applied Mat Hematics, 1989, 49(3) :906-931.
  • 8Donoho D L.For most large underdetermined systems of linear equations, the minimal 11 norm solution is also the sparsest solution[J].Communications on Pure and Applied Mathematics, 2006,59 (6) : 797-829.
  • 9Cand6s E, Tao T.Decoding by linear programming[J].iEEE Transactions on Information Theory, 2005,51 ( 12 ) : 4203-4215.
  • 10Baraniuk R.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4) : 118-121.

二级参考文献6

  • 1Cand&E J,Romberg J,Tao T.Signal recovery from incomplete and inaccurate measurements[J].Comm Pure Appl Math,2005,59(8):1207-1223.
  • 2Donoho D L,Stark P B.Uncertainty principles and signal recovery[J].SIAM J Applied Math,1989,49:906-931.
  • 3Cand'es E,Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Comput Math,2006.
  • 4Cand'es E,Tao T.Near optimal signal recovery from random projections and universal encoding strategies[J].IEEE Trans Inform Theory,2004.
  • 5Cand'es E J,Tao T.Decoding by linear programming[J].IEEE Trans Inform Theory,2005,51(12):4203-4215.
  • 6Donoho D.Compressed sensing[J].IEEE Trans Inf Theory,2006,52(4):1289-1306.

共引文献26

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部