期刊文献+

结合SIFT和Krawtchouk矩不变量的图像配准方法 被引量:8

Image registration based on SIFT and Krawtchouk moment invariants
下载PDF
导出
摘要 提出了一种基于SIFT和Krawtchouk矩不变量的图像配准方法。通过SIFT关键点检测方法检测关键点;对每个关键点计算其邻域的Krawtchouk矩不变量,并将其构成描述关键点的特征向量;计算关键点特征向量之间的欧氏距离找出相匹配的关键点对。实验结果表明,该算法的配准性能与标准SIFT算法相当,而运算速度比标准SIFT算法有较大程度提高。 This paper proposes an image registration based on SIFT (Scale Invariant Feature Transform) and Krawtchouk moment invariants. Key points are extracted from images by applying SIFT. Then Krawtchouk moment invariants from the image region around key point are calculated, and these Krawtchouk moment invariants constitute feature vectors to describe the key point. Finally, key points are matched by calculating the Euclidean distance of feature vectors. The results of experiments show that the algorithm which has the same performance with the standard SIFT is more rapid than the standard SIFT.
出处 《计算机工程与应用》 CSCD 2013年第1期202-205,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773053 No.60970105) 山东省自然科学基金(No.Y2007G22 No.ZR2009GQ005) 山东省教育厅科技计划(No.J08LJ06)
关键词 图像配准 尺度不变特征变换(SIFT) 特征描述 Krawtchouk矩不变量 image registration Scale Invariant Feature Transform (SIFT) feature description Krawtchouk moment invariants
  • 相关文献

参考文献13

  • 1Tomasi C,Kanade T.Detection and tracking of point feature, Carnegie Mellon University Technical Report CMU-CS-91- 132[R].Pittsburgh, USA, 1991.
  • 2Lowe D G,Distinctive image features from scale-invariant key points[J].Intemational Journal of Computer Vision, 2004, 60 (2):91-110.
  • 3Ke Y, Sukthankar R.PCA-SIFT: a more distinctive represen- tation for local image descriptors[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004,2 : 506-513.
  • 4Mikolajczyk K, Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10) : 1615-1630.
  • 5Jolliffe I T.Principal component analysis[M]//Springer Series in Statistics.2nd ed.NY: Springer,2002.
  • 6Hu M K.Visual pattern recognition by moment invariants[J]. IRE Trans on Information Theory, 1962,8(2) : 179-187.
  • 7Xin Y.A mulibit geometrically robust image watermark based on Zemike moments[C]//Proceedings of International Confer- ence on Pattern Recognition.Cambridge, UK: British Machine Vision Association, 2004 : 861-864.
  • 8Chong C W, Raveendran P, Mukundan R.Translation and scale invariants of Legendre moments[J].Pattem Recongnition, 2004,37: 119-129.
  • 9Mukundan R,Ong S H,Lee P A.Image analysis by Tchebi- chef moments[J].IEEE Transactions on Image Processing, 2001,10:1357-1364.
  • 10Yap P T, Raveendran P, Ong S H.Image analysis by Kraw- tchouk moments[J].lEEE Transactions on Image Processing, 2003,12( 11 ) : 1367-1377.

二级参考文献24

  • 1刘明,叶正麟,陈作平.基于自适应分类的快速分形编码方法[J].中国图象图形学报,2006,11(1):128-133. 被引量:4
  • 2Jacquin A E.Fractal image coding:A review[C].IEEE Transactions on Image Processing.1993,81(10):1451-1465.
  • 3Guo jun Lu,Toonlin Yew.Applications of partitioned iterated function systems in image and video compression[J].Journal of Visual Communication and Image Representations,1996,7(2):144-154.
  • 4Wohlberg B,Jager G.A review of the fractal image coding literature[J].IEEE Transactions on Image Processing,1999,8(12):1716-1729.
  • 5Lai CM,Lam KM,Siu W C.A fast fractal image coding based on Kick-out and zero contrast conditions[J].IEEE Transactions on Image Processing,2003,12(11):1398-1403.
  • 6Distasi R,Nappi M,Riccio D.A range/domain approximation error-based approach for fractal image compression[J].IEEE Transactions on Image Processing,2006,15(1):89-97.
  • 7Jacquin A E.Fractal image coding based on theory of iterated contractive image transformations[J].SPIE Visual Commun.Image Process.1990,1360:227-239.
  • 8Fisher Y.Fractal image compression:Theory and application[M].New York:Springer-Verlag,1995.49-51.
  • 9Yap P,Raveendran P,and Ong S.Image analysis by Krawtchouk moments[J],IEEE Transactions on Image Processing,2003,12(11):1367-1377.
  • 10Iano Y,da Silva F S,Cruz ALM.A fast and efficient hybrid fractal-wavelet image coder[J].IEEE Transactions on Image Processing,2006,15(1):98-105.

共引文献11

同被引文献65

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部