期刊文献+

随机微分方程稳定性的新的充分条件 被引量:4

The new sufficient condition of stability for stochastic differential equation
下载PDF
导出
摘要 考虑随机微分方程(SDEs)相容解的几种随机稳定性。Gard和Mao分别应用Lya-punov第二方法给出了保证It型随机微分方程(SDEs)的相容解是随机稳定、随机渐近稳定及全局随机渐近稳定的充分条件,这些条件通常要求Lyapunov函数V(x,t)为正定函数。应用随机分析的技巧,在很宽的条件下,把Lyapunov函数V(x,t)正定的条件去掉,且仍然保证方程的解的几种随机稳定性。结果推广了随机微分方程稳定性的经典结果。 Consider three types of stochastic stabilities for adapted solutions of stochastic differential equations' (SDEs), namely, stochastically stability, stochastically asymptotically stability and globally stochastically asymp- totically stability. By using Lyapunov' s second method, Gard and Mao have given sufficient conditions for these three stabilities. However, their Lyapunov functions are supposed to be positive definite. Some loose conditions ( i. e., Lyapunov functions are not necessary to be positive definite) for Lyapunov functions are given by applying sto- chastic analysis technique. This is strict generalizations of the classical results.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2012年第6期701-705,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11126219 11171081 11171056)
关键词 随机微分方程 随机稳定性 LYAPUNOV函数 stochastic differential equation stochastic stability Lyapunov function
  • 相关文献

参考文献4

二级参考文献34

  • 1Fengying Wei (College of Math. and Computer Sci., Fuzhou University, Fuzhou 350108) Ke Wang (Dept. of Math., Harbin Institute of Technology, Weihai 264209, Shandong).EXPONENTIAL ESTIMATE OF SOLUTION TO STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY[J].Annals of Differential Equations,2010,26(3):332-340. 被引量:2
  • 2YANG Z G, XU D Y, XIANG L. Exponential p-stability of impulsive stochastic differential equations with delays[ J]. Phys Lett A, 2006,359: 129 - 137.
  • 3BERMAN A, PLEMMONS R. Nonnegative matrices in mathematical sciences[ M ]. New York: Adaemic Press, 1979.
  • 4BECKENBACH E, PLEMMONS R. Inequalities[M]. New York: Spring-Verlag, 1961.
  • 5ZHANG G, LIN Y. Functional analysis[ M]. Beijing: Beijing Univ Press, 1987.
  • 6ZHU W, XU D Y, YANG C D. Exponential stability of singularly perturbed impulsive delay differential equations[ J]. J Math Anal Appl, 2007, 328:1161 - 1172.
  • 7HIGHAM D J, MAO Xuerong, YUAN Chengui. Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equations[J]. Numer Math, 2007, 108 : 295- 325.
  • 8YUAN Chengui, MAO Xuerong. Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching[J]. Math Comput Simul, 2004, 64:223-235.
  • 9HIGHAM D J, KLOEDEN P E. Numerical methods for nonlinear stochastic differential equations with jumps[J]. Numer Math, 2005, 101:101-119.
  • 10HIGHAM D J, KLOEDEN P E. Convergence and stability of implicit methods for jump-diffusion systems[J]. Int J Num- er Anal Mod, 2006, 3:125-140.

共引文献12

同被引文献7

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部