摘要
考虑随机微分方程(SDEs)相容解的几种随机稳定性。Gard和Mao分别应用Lya-punov第二方法给出了保证It型随机微分方程(SDEs)的相容解是随机稳定、随机渐近稳定及全局随机渐近稳定的充分条件,这些条件通常要求Lyapunov函数V(x,t)为正定函数。应用随机分析的技巧,在很宽的条件下,把Lyapunov函数V(x,t)正定的条件去掉,且仍然保证方程的解的几种随机稳定性。结果推广了随机微分方程稳定性的经典结果。
Consider three types of stochastic stabilities for adapted solutions of stochastic differential equations' (SDEs), namely, stochastically stability, stochastically asymptotically stability and globally stochastically asymp- totically stability. By using Lyapunov' s second method, Gard and Mao have given sufficient conditions for these three stabilities. However, their Lyapunov functions are supposed to be positive definite. Some loose conditions ( i. e., Lyapunov functions are not necessary to be positive definite) for Lyapunov functions are given by applying sto- chastic analysis technique. This is strict generalizations of the classical results.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2012年第6期701-705,共5页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11126219
11171081
11171056)