期刊文献+

测度链上非一致指数型二分性的鲁棒性(英文)

Robustness of nonuniform exponential dichotomies on measure chains
下载PDF
导出
摘要 研究线性非自治测度链系统在线性扰动下的一些稳定性结果。利用巴拿赫压缩映像原理和一些算子不等式,建立测度链上非一致指数型二分性的鲁棒性理论,即一个线性系统具有非一致指数型二分性,那么这个线性系统的所有邻域的线性系统具有相似的非一致指数型二分性。所有结果都是在巴拿赫空间中获得的。 Some results of stability for linear perturbations of linear nonautonomous systems on meas- ure chains are explored. With the help of the Banach contraction principle and some operator inequalities, the robustness of nonuniform exponential dichotomies on measure chains is established, that is, if a linear system admits a nonuniform exponential dichotomy, then all the neighborhood systems of this sys- tem also admit a similar nonuniform exponential dichotomy. All results are obtained in Banach spaces.
作者 张继民
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2012年第6期706-714,共9页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Nature Science Foundation of China(11126269 11201128)
关键词 鲁棒性 非一致指数型二分性 测度链 Robustness nonuniform exponential dichotomies measure chains
  • 相关文献

参考文献11

  • 1MASSERA J, SCHFER J. Linear differential equations and functional analysis I[ J]. Ann Math, 1958, 67:517 -573.
  • 2COPPEL W A. Dichotomies in stability theory[ M]. Berlin - New York: Springer - Verlag, 1978.
  • 3A LONSO A, HONG J, OBAYA R. Exponential dichotomy and trichotomy for difference equations[ J]. Comput Math Appl, 1999, 38:41 -49.
  • 4CHOW S N, LEIVA H. Existence and roughness of the exponential dichotomy for skew - product semiflows in Banach spaces[ J]. J Difter Equa- tions, 1995, 120:429 -477.
  • 5PLISS V, SELL G. Robustness of exponential dichotomies in infinite - dimensional dynamical system[J].J Dynam Differ Equations, 1999, 11 : 471 -513.
  • 6POPESCU L. Exponential dichotomy roughness on Banach spaces[J].J Math Anal Appl, 2006, 314:436-454.
  • 7BARREIRA L, VALLS C. Robustness of nonuniform exponential dichotomies in Banach spaces[ J ]. J Differ Equations, 2008,244:2407 - 2447.
  • 8BOHNER M, PETERSON A. Dynamic equations on time scales: an introduction with applications[M]. Boston: Birkhauser, 2001.
  • 9BOHNER M, LUTZ D A. Asymptotic behavior of dynamic equations on time scales[ J ]. J Diff Equ Appl, 2001, 7:21 - 50.
  • 10POTZSCHE C. Exponential dichotomies for dynamic equations on measure chains[J]. Nonlinear Anal -Theor, 2001,47:873 -884.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部