期刊文献+

一类p-Laplace时滞方程的数值计算

Numerical method of a class of p-Laplace equations with delay
下载PDF
导出
摘要 研究一类p-Laplace时滞方程边值问题的数值计算方法,这类方程在许多领域有着广泛的应用。使用积分插值法和线性插值公式,构造求解这类方程的差分格式,并对差分格式进行了误差分析。误差分析表明,当p=2或当p≥3时,差分方程逼近微分方程的截断误差为O(h2)。针对具体方程进行了数值实验,结果说明所给出的数值计算方法是有效的。 The numerical method for a class fields, is considered. A difference scheme method and the linear interpolation formula. when p =2 or p≥3 the truncation error was illustrate the efficiency of the scheme. of p-Laplace equations with delay, which were widely applied to many 0 ( h2 ). Furthermore, the numerical experiment was also carried out to
机构地区 江苏大学理学院
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2012年第6期748-752,共5页 Journal of Natural Science of Heilongjiang University
基金 中国博士后科学基金面上资助项目(2011M500874) 江苏省博士后科研资助计划项目(1002030C) 江苏省高校自然科学基金项目(11KJD110001) 江苏大学高级专业人才科研启动基金资助项目(10JDG124 10JDG020) 江苏大学大学生科研立项(11A164 Y11A075)
关键词 P-LAPLACE方程 时滞 差分格式 误差分析 p-Laplace equations time delay difference scheme error analysis
  • 相关文献

参考文献9

  • 1JANFALK U. On certain problems concerning the p-Laplace operator [ G]. Linkiping Studies in Science and Technology. Dissertations, 326. Link6ping University Department of Mathematics, LinkiJping, 1993.
  • 2LIU Chang-chun. Weak solutions for a viscous p-Laplacian equation [ J]. J Diff Equ, 2003 (65) : 1 - 15.
  • 3RAMASWAMY M, SHIVAJI R. Multiple positive solutions for classes of p-Laplacian equations[ J ]. Differential Integral Equations, 2004, 17 (11 - 12) :1255 - 1261.
  • 4HALE J K. Theory of functional differential equations [ M]. 2"d Ed. New York:Springer-Verlag, 1977.
  • 5SONG Chang-xiu. Existence of positive solutions of p-Laplacian functional differential equations[ J]. Elec J Diff Equ, 2006, 22 : 1 - 9.
  • 6WANG You-yu, ZHAO Wen-xia, GE Wei-gao. Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional p-Laplacian [J]. J Math Anal Appl, 2007, 326( 1 ) :641 -654.
  • 7JIN Chun-hua, YIN Jin-xue. Positive solutions for the boundary value problems of one-dimensional p-Laplacian with delay [ J ]. J Math Anal App|, 2007, 330(2) :1238 - 1248.
  • 8JIANG Da-qing, XU Xiao-jie, O' REGAN D, et al. Existence theory for single and multiple solutions to singular positone boundary value problems for the delay one-dimensional p-Laplacian [ J ]. Ann Polon Math, 2003, 81 ( 3 ) :237 - 259.
  • 9JIANG Da-qing, CHU Ji-feng, O' REGAN D, et al. Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian [ J]. Math Inequal Appl, 2004, 7 (4) :523 - 534.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部