期刊文献+

一类四次多项式系统原点的中心条件与极限环分支 被引量:4

Conditions of the origin to be a center and bifurcation of limit cycles for a quartic polynomial system
下载PDF
导出
摘要 讨论一类四次多项式微分系统的中心条件与极限环分支问题。通过对该实系统所对应的伴随复系统奇点量的计算,得到系统的原点成为中心的必要条件,并对它的充分性进行严格的证明。从奇点量导出焦点量,得到了原点成为8阶细焦点的条件,最后证明该系统从在原点邻域有8个小振幅极限环。这是首次得到四次系统在细焦点可分支出8个极限环。 The bifurcation of limit cycles and conditions of origin to be a center for a biquadratic polynomial system is investigated. By the computation of the singular point values for the concomitant complex system of the real sys- tem, the necessary conditions of origin of system to be a center is obtained, and the sufficiency for the conditions is strictly proven. The focal values are derived from of the singular points, and the conditions that the origin to be an 8 order weak focal is obtained. Finally, it is proved that this system has small amplitude limit cycles in the neigh- borhood of the origin. This is the first time that an example of a biquadratic system with eight limit cycles bifurcated from a weak focal is given.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2012年第6期767-770,775,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10961011) 广西自然科学基金资助项目(2012GXNSFAA053003) 广西教育厅科研基金资助项目(201204LX482)
关键词 四次系统 奇点量 焦点量 极限环 quartic system singular point value focal value limit cycle
  • 相关文献

参考文献12

  • 1BAUTIN N. On the number of limit cyckes which appear with the variation fo coefficients from an equilibrium position of focus or center type [ J ]. Amer Math Soc Trans, 1954, 100 : 397 - 413.
  • 2SIBIRSKII K S. On the number of limit cycles in a neighborhood of singular points[ J]. Dif Eq, 1965 (1) : 36 -47.
  • 3L1,OYD N G, BLOWS T R, KALENGE M C. Stone cubic systems with several limit cycles[J]. Nonlinearity,1988 (1) : 653 -669.
  • 4NING S, MA S, KWEK K H, et al. A cubic system with eight small-amplitude limit cycles[J]. Appl Math Lett, 1994, 7(4) : 23 -27.
  • 5MA S, NING S. Derive some new conditions on existence of eight limit cycles for a cubic system[ J]. Computers and Mathematics with Applica- tions, 1997, 33(7) : 59 -84.
  • 6ZOEADEK H. Eleven small limit cycles in a cubic vector field[ J]. Nonlinearity, 1995, 8 (5) : 487 -506.
  • 7WANG Q, LIU Y, DU C. Small limit cycles bifurcating from fine focuspoints in quartie order Z3-equivariant vector fields[ J ]. J Math Anal Appl, 2008, 337(1) : 524 -536.
  • 8CHRISTOPHER C. Estimating limit cycle bifurcations from centers [ C ]. Differential equations with symbolic computation. Berlin : Birkhauser, 2005 : 23 - 35.
  • 9It UANG Jing, WANG Fang, WANG Lu, et al. A quartic system and a quintic system with fine focus of order 18 [ J]. Bull Sci Math, 2008, 132 (3) : 205 -217.
  • 10刘一戎,陈海波.奇点量公式的机器推导与一类三次系统的前10个鞍点量[J].应用数学学报,2002,25(2):295-302. 被引量:48

二级参考文献2

共引文献47

同被引文献20

  • 1史松龄.二次系统(E2)出现至少四个极限环的例子[J].中国科学,1979(11):1051-1056.
  • 2LI J B. Hilbert' s 16th problem and bifurcations of planar polynomial vector fields[J]. International Journal of Bifurcation and Chaos, 2003, 13 (1): 47-106.
  • 3LI C Z, LIU C J, YANG J Z. A cubic system with thirteen limit cycles[J]. Journal of Differential Equations, 2009, 246(9) : 3609 -3619.
  • 4$HUBE A 5. On Kukles and Cherkas conditions for a cubic system[ J]. Differential Equations, 1993, 29 (4) : 625 -627.
  • 5CHAVARRIGA S J, GINE J. Integrability of a linear center perturbed by a fourth degree homogeneous polynomial [ J ]. Publicacions Matemhtiques, 1996, 40( 1 ) : 21 -39.
  • 6CHAVARRIGA S J, GINE J. lntegrability of a linear center perturbed by a fifth degree homogeneous polynomial[ J]. Publicacions Matemhtiques, 1997, 41(2) : 335 -356.
  • 7GINE J. Conditions for the existence of a center for the Kukles homogeneous systems [ J ]. Computers & Mathematics with Applications, 2002, 43 (10) : 1261 - 1269.
  • 8LLIBRE J, MEREU A C. Limit cycles for generalized Kukles polynomial differential systems [ J ]. Nonlinear Analysis: Theory, Methods & Appli- cations, 2011,74(4): 1261 -1271.
  • 9SAEZ E, SZANTO I. Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse [ J ]. Applied Mathematics Letters, 2012, 25(11) : 1695 -1700.
  • 10YU P, HAN M A. Twelve limit cycles in a cubic case of the 16th Hilbert problem[ J]. International Journal of Bifurcation and Chaos, 2005, 15 (7) : 2191 -2205.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部