期刊文献+

基于双极偏好占优的多目标进化算法及其应用

Multi-objective evolutionary algorithm based on bipolar preferences dominance and its application
下载PDF
导出
摘要 为有效处理决策者能够提供双极偏好信息的多目标优化问题,加快原有算法的收敛速度,借鉴逼近理想解方法和搜索空间区域划分思想,定义了一种新型双极偏好占优关系,并引入到NSGA-Ⅱ算法中,设计了相应的非支配排序策略、种群多样性策略和约束处理策略,提出一种基于双极偏好占优的NSGA-Ⅱ算法(2p-NSGA-Ⅱ)。将该算法应用于求解两桁架结构设计的工程问题,对比仿真实验结果表明了2p-NSGA-Ⅱ算法的有效性。 To address the multi-objective optimization problems with bipolar preferences and to accelerate the conver gence speed of original algorithm, a new bipolar preference dominance relationship based on Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and the idea of search space dividing was defined. By intro- ducing this relationship to Nondominated Sorting Genetic Algorithm Ⅱ (NSGA- Ⅱ ), the corresponding strategies which included non-dominated-sorting procedure, population diversity and constraint-handling were designed. Thus a Bipolar Preference Dominance Based Nondominated Sorting Genetic Algorithm Ⅱ (2p-NSGA-Ⅱ ) was proposed. This algorithm was applied to the engineering problem of two bar truss design, the comparison result showed the ef- fectiveness of 2p-NSGA- Ⅱ.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第12期2696-2706,共11页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61070135) 国家社会科学基金资助项目(10GBL095)~~
关键词 多目标优化 进化算法 双极偏好 两桁架结构设计 multi-objective optimization evolutionary algorithm bipolar preferences two har truss design
  • 相关文献

参考文献19

  • 1DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA II [J]. IEEE Trans- actions on Evolutionary Computation, 2002, 6(2):182-197.
  • 2ZITZLER E, LAUMANNS M, THIELE L. SPEA2.. impro- ving the strength Pareto evolutionary algorithm[R]. Athens, Greece: International Center for Numerical Methods in Engi neering, 2001.
  • 3KNOWLES J D, CORNE D. Approximating the nondominat- ed front using the Pareto arehived evolution strategy[J]. Evo- lutionary Computation, 2000, 8(2):149-172.
  • 4FONSECA C, FLEMING P J. Genetic algorithms for multiob jective optimization: formulation, discussion and generalization [C]//Proceedings of the 5th International Confrence on Genet Algorithms. San Mateo, Cal., USA: Morgan Kaufmann, 1993:416-423.
  • 5BRANKE J, KAUSSLER T, SCHMECK H. Guidance in ev- olutionary multiobjective optimization[J].Advances in Engi- neering Software, 2001,32(6) :499-507.
  • 6DEB K, SUNDAR J, BHASKARA U, et al. Reference point based multiobjective optimization using evolutionary algo rithms[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 273-286.
  • 7DEB K, KUMAR A. Interactive evolutionary multiohjective optimization and decision making using reference direction method[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York, N. Y. , USA: ACM, 2007 : 781-788.
  • 8DEB K, KUMAR A. Light beam search based multiobjective optimization using evolutionary algorithms[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Washing ton, D. C. , USA: IEEE, 2007: 2125-2132.
  • 9MOLINA J, SANTANA L V, HERNANDEZ-DIAZ A G, et al. G-dominance: reference point based dominance for mul- tiobjective metaheuristics[J]. European Journal of Operational Research, 2009, 197(2) :685-692.
  • 10SAID L B, BECHIKtt S, GHEDIRA K. The r-dominance: a new dominance relation for interactive evolutionary multicri- teria decision making[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(5) :801-818.

二级参考文献50

  • 1王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 2刘淳安,王宇平.约束多目标优化问题的进化算法及其收敛性[J].系统工程与电子技术,2007,29(2):277-280. 被引量:11
  • 3徐杰,黄德先.基于混合粒子群算法的多目标车辆路径研究[J].计算机集成制造系统,2007,13(3):573-579. 被引量:31
  • 4吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 5LU Haiming, YEN G G. Rank-density-based multi-objective genetic algorithm and benchmark test function study [J]. IEEE Transactions on Evolutionary Computation, 2003,7 (4) : 325-342.
  • 6HO Y P, SHIMIZU K. Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme[J]. Information Sciences, 2007,177(14) :2985-3004.
  • 7PONSICH A, AZZARO-PANTE C, DOMENECH S L, et al. Constraint handling strategies in genetic algorithms application to optimal batch plant design[J]. Chemical Engineering and Processing, 2008,47 (3) :420-434.
  • 8CHANG P C, CHEN S H. Development of a sub-population genetic algorithm Ⅱ (SPGA Ⅱ )for multi-objective combinatorial problems[J]. Applied Soft Computing, 2009,9 (1) : 173- 181.
  • 9RUDOLPH G. Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994,5 (1) :96-101.
  • 10Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester, NY, USA: Wiley, 2001.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部