期刊文献+

一类带有饱和与竞争函数项的捕食模型解的稳定性 被引量:2

Persistence of Solutions of a Predator-Prey Model with Predator Saturation and Competition Function
下载PDF
导出
摘要 讨论一类边界条件为Neumann边界、带有饱和与竞争项的捕食模型解的损耗性和持久性,应用抛物方程比较原理和上下解方法获得解的损耗性和持久性的条件,和非负常稳态解的稳定性. In this paper,we consider a predator-prey model with predator saturation and competition functional response under homogeneous Neumann boundary condition.By using parabolic equation comparison principle and the upper-lower solutions method,we study the dissipation and the persistence of the global solution,and obtain the corresponding conditions,and the stability of the nonnegative constant steady states solutions.
出处 《湖北文理学院学报》 2012年第11期8-10,40,共4页 Journal of Hubei University of Arts and Science
基金 湖北省教育厅科研项目(B20092503)
关键词 NEUMANN边界 捕食模型 抛物方程比较原理 上下解 Neumann boundary Predator-prey model Parabolic equation comparison principle Upper-lower solutions
  • 相关文献

参考文献4

  • 1CANTRELL R S, COSNER C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1): 206-222.
  • 2BAZYKIN A D, KHIBNIK ALEKSANDR IOSIFOVICH, KRAUSKOPF BERND. Nonlinear Dynamics of Interacting Populations[M]. Singapore: World Scientific, 1998.
  • 3WANG M X, WU Q. Positive solutions of a prey-predator model with predator saturation and competition[J]. Mathematical Analysis and Applications, 2008, 345(2): 708-718.
  • 4叶其孝,李正元,王明新,等.反应扩散方程引论[M].2版.北京:科学出版社,2011.

共引文献7

同被引文献9

  • 1CANTRELL ROBERT STEPHEN, COSNER CHRIS. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1): 206-222.
  • 2BAZYKIN A D. Nonlinear dynamics of interacting populations[M]. Singapore: World Scientific, 1998.
  • 3HENRY D. Lecture Notes in Mathematics[M]. Berlin: Springer-Verlag, 1993.
  • 4Cantrell R S,Cosne C.On the dynamics of predator-prey models with th Beddington-DeAngelis functional response[J].Journal of Mathematics Analysis and Application,2001,257:206-222.
  • 5Bazykin A D.Nonlinear dynamics of interacting populations[M].Singapore:World Scientific,1998.
  • 6Wang M X,Wu Q.Positive solutions of a prey-predator model with predator saturation and competition[J].Journal of Mathematical Analysis and Applications,2008,345(2):708-718.
  • 7Wang Y F,Meng Y J.Asymptotic behavior of a competi- tion-diffusion system with time delays[J].Math and Com- put Model,2003,38:509-517.
  • 8Meng Y J,Wang Y F.Asymptotic behavior of a competi- tion-diffusion asymptotic behavior of a predator-prey sys- tem with time delays[J].E J Diff Equa,2005,131;1-11.
  • 9Pao C V.Nonlinear parabolic and elliptic equations[M].New york:Plenum Prevss,1992.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部