摘要
A carbon paste electrode with added multiwall carbon nanotubes chemically modified with N-(3,4-dihydroxyphenethyl)- 3,5-dinitrobenzamide was used as the electrochemical sensor for the determination of trace amounts of isoprenaline. The modified electrode showed good electrocatalytic activity for the anodic oxidation of isoprenaline, which was due to a substantial decrease in the anodic overpotential. Under the optimum conditions, measurements using square wave voltammetry had a linear range in the range of 0.3 to 125.0 μmol/L of isoprenaline and a detection limit of 0.1 μmol/L. The diffusion coefficient and kinetic parameters were determined using electrochemical methods. The relative standard deviation for seven successive assays of 1.0 and 20.0 μmol/L isoprenaline were 1.9% and 2.4%, respectively.This electrochemical sensor was successfully applied for the determination of isoprenaline in human urine and injection solution samples.
A carbon paste electrode with added multiwall carbon nanotubes chemically modified with N-(3,4-dihydroxyphenethyl)- 3,5-dinitrobenzamide was used as the electrochemical sensor for the determination of trace amounts of isoprenaline. The modified electrode showed good electrocatalytic activity for the anodic oxidation of isoprenaline, which was due to a substantial decrease in the anodic overpotential. Under the optimum conditions, measurements using square wave voltammetry had a linear range in the range of 0.3 to 125.0 μmol/L of isoprenaline and a detection limit of 0.1 μmol/L. The diffusion coefficient and kinetic parameters were determined using electrochemical methods. The relative standard deviation for seven successive assays of 1.0 and 20.0 μmol/L isoprenaline were 1.9% and 2.4%, respectively.This electrochemical sensor was successfully applied for the determination of isoprenaline in human urine and injection solution samples.
出处
《催化学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第12期1919-1926,共8页
基金
supported by Isfahan University of Technology Research Council and the Center of Excellence for Sensor and Green Chemistry
关键词
化学
原理
催化
燃烧
isoprenaline
carbon nanotube
electrode
electrocatalytic effect
voltammetry