期刊文献+

不同相似度度量方式的随机数据聚类分析 被引量:4

Random data clustering analysis based on different similarity measures
下载PDF
导出
摘要 采用经典的欧几里德距离、曼哈顿距离以及形状相似距离3种不同相似度度量方式,应用标准模糊C均值聚类算法在多个表示矩形对象的二维随机数据集上进行聚类,分析对比其相似度评估性能。聚类结果的分类统计表明,形状相似距离相比其他两种距离,能够考虑矩形对象的形状相似因素进行相似度评估。 In this paper, the classical Euclidean distance and Manhattan distance as well as the shape similarity dis- tance (SSD) are used as the similarity measure in the standard fuzzy c-mean clustering test on multiple rectangular ob- jects represented by two-dimension data. Clustering results are classified and statistical analyzed. Compared to the oth- er two kinds of distances, the shape similarity distance can consider the shape similar factors to assess similarity.
作者 李中 张铁峰
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2012年第6期45-48,64,共5页 Journal of North China Electric Power University:Natural Science Edition
基金 中央高校基本科研业务费专项资金资助项目
关键词 相似度 形状相似 模糊聚类 统计 similarity shape similarity FCM statistics
  • 相关文献

参考文献10

  • 1Gelbard R, Goldman O, Spiegler I. Investigating diver- sity of clustering methods: An empirical comparison [J]. Data & Knowledge Engineering, 2007, 63 (1): 155 - 166.
  • 2Sambasivam S, Theodosopoulos N. Advanced data clus- tering methods of mining Web documents [ J]. Issues in Informing Science and Information Technology, 2006, (3): 563-579.
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 4Tversky A. Features of similarity [ J ]. Psychological Review, 1977, 84 (4): 327-352.
  • 5Jain A K, Murty M N, Flynn P J. Data clustering: A review. ACM Computing Surveys [J], 1999, 31 (3) : 264 - 323.
  • 6Jiawei H, Micheline K. Data mining: Concepts andtechniques, 2nd ed [ M]. Morgan Kaufmann Publish- ers, 2006.
  • 7Wang D F, Yeung D S, Tsang E C C. Weighted mahal- anobis distance kernels for support vector machines [J]. IEEE Trans. Neural Networks, 2007, 18 (5): 1453 - 1462.
  • 8李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 9Li Z, Yuan J S, Hong Y, Zhang K. K-mean algorithm with a distance based on the characteristic of differences [C]. WiCOM 2008, Dalian, China, 2008, 10.
  • 10苑津莎,李中.基于形状相似距离的K-means聚类算法[J].华北电力大学学报(自然科学版),2009,36(6):98-103. 被引量:8

二级参考文献25

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Jain A K, Dubes R C. Algorithms for clustering [M]. Englewood Cliffs, N. J. : Prentice Hall, 1988.
  • 3Jiawei Han, Micheline Kamber. Data mining: concepts and techniques [M]. Morgan Kaufmann Publishers, 2006.
  • 4Duda R O, Hart P E, Stork D G. Pattern classification, 2nd ed [M]. Wiley, 2001.
  • 5Mao J, Jain A K. A self - organizing network for hyperellipsoidal clustering [J ]. IEEE Trans. Neural Networks, 1996, 7 (2): 16-29.
  • 6Cao Yongqiang, Wu Jianhong. Dynamics of projective adaptive resonance theory model: the foundation of PART algorithm [J ]. IEEE Trans. Neural Network, 2004, 15 (2) : 245- 260.
  • 7De Castro L N, Von Zuben F J. An evolutionary immune system network for data clustering [C]. Proceedings of the Sixth Brazilian Symposium on Neural Networks. Rio de Janeiro, 2000.
  • 8Zakai M. General distance criteria [ J ]. IEEE Trans Information Theory, 1964, (1) : 94 - 95.
  • 9Sebe N, Lew M S, Huijsmans D P. Toward improved ranking metrics [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22 ( 10 ) : 1132 - 1143.
  • 10Su Mu - Chun, Chou Chien- Hsing. A modified version of the K-means algorithm with a distance based on cluster symmetry [J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23 (6) : 674 - 680.

共引文献1177

同被引文献32

  • 1金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69. 被引量:82
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 3方旭明,戚彩霞,向征.IEEE 802系列无线网络网状组网与移动切换技术综述[J].计算机应用,2006,26(8):1756-1761. 被引量:12
  • 4高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 5Niculescu D, Nath B. Ad hoc positioning system(APS) us- ing AOA[C]//Proc of the 22rid Annual Joint Conf of the IEEE Computer and Communications Societies. Piscat- away, N J: IEEE, 2003:1734-1743.
  • 6Zhang Y W, Brown A K, Malik W Q, et al. High resolution 3-D angle of arrival determination for indoor UWB multipa- th propagation[J].IEEE Trans on Wireless Communications, 2008,7(8): 3047-3055.
  • 7Llombart M, Ciurana M, Barcelo-Arroyo F. On the scalabili- ty of a novel WLAN positioning system based on time of ar- rival measurements[C]//Proc of the 5th workshop on Posi- tioning, Navigation and Communication. Piscataway, NJ: IEEE, 2008:15-21.
  • 8Lu W, Han Jet al. Discovery of general knowledge in large spatial databases. In: Proc. Far East Workshop on Geograph- ic Information Systems[J]. Singapore, 1993. 275-289.
  • 9Likas, M. Vlassis, J. Verbeek. The global k-means clustering al- gorithm. Pattern Recognition. Febuary, 2003, 36(2): 451-461.
  • 10孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部