期刊文献+

数值微分的小波最小二乘方法

The least square based on wavelets for numerical differentiation
下载PDF
导出
摘要 给出了利用小波求解数值微分的方法。将微分问题转化为等价的第一类Fredholm积分方程,然后选取小波基,使用最小二乘求解该积分方程。我们给出的分析框架容许使用具紧支集的小波,利用正则化保证了计算的稳定性。数值计算实例表明,本方法稳定,运算速度快,计算精度高。 In this paper, the algorithm for numerical differentiation based on wavelets is proposed. We trans- form the differential problems into the Fredholm integral equation of first kind. By selecting the wavelets ba- ses, we use the least square method to solve this supported wavelets in our analysis framework, it perimental results show that our methods are not integral equation. Due to allowance for the use of compact is easily regularized and reduces the computation. The ex- only stable, but also fast and accurate.
出处 《沈阳航空航天大学学报》 2012年第5期89-92,共4页 Journal of Shenyang Aerospace University
基金 吉林省自然科学基金(项目编号:201115161)
关键词 数值微分 第一类FREDHOLM积分方程 最小二乘法方法 正则化 numerical differentiation the Fredholm integral equations of the first kind least square meth-od regularization
  • 相关文献

参考文献8

  • 1Hank M,Scherzer O. Inverse problems light : numericaldifferentiation [ J]. Amer. Math. Monthly,2001,108(6):512-521.
  • 2Nakamura G, Wang S Z’Wang Y B. Numerical differ-entiation for the second order derivative of functionswith several variables [ M]. Japan : Hokkaido Univ.,2005.
  • 3Tikhonov A N,Arsenin V Y. Solutions of Ill-posedProblemsf M]. Washington; Winston and Sons, 1997.
  • 4王彦博.数值微分及应用[D].上海:复旦大学,2000.
  • 5Kress R. Linear Integral Equation[M], Berlin ; Spriger-Verlag,1989.
  • 6Wolfgang Hardle, Gerard Kerkyacharian, DominiquePicard, et al. Approximation and Statistical Applica-tion. [M] . Berlin : Springer,1998.
  • 7Daubechies I. Ten Lectures on Wavelets[ M].北京:国际工业出版社,2004.
  • 8krish A. An introduction to the mathematical theory ofinverse prob!em[M]. Berlin:Spriger-Verlag, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部