期刊文献+

基于CO_2排放控制的炼厂能量系统改造及其多目标优化 被引量:2

Multi-objective Optimization and Retrofit of Energy Utilization System in a Refinery Based on CO_2 Emission Control
下载PDF
导出
摘要 针对炼厂能量利用系统,提出了将换热网络改造与燃料转换相结合的炼厂CO2减排控制方法,建立了年度化改造总费用与CO2年排放总量权衡的多目标优化数学模型,考虑了系统改造的经济性和系统改造所额外增加的CO2排放对系统优化的影响,采用ε约束法获得了Pareto最优前沿。以某炼厂蜡油加氢装置换热网络为例,阐述了所提出方法的实现过程及其效果,获得了CO2年排放量与年度化改造总费用之间的Pareto最优前沿以及CO2年排放总量限制条件下的最优改造策略,为炼厂的CO2减排与控制提供了多目标优化的理论基础。 For energy utilization system in a refinery, strategies combining retrofit of heat exchanger network and fuel switching were proposed to reduce C()2 emission in the refinery. A multi-objective optimization model that is subject to a trade-off between the total annual costs for retrofit and total annual CO~ emission was developed. In the proposed method, influences of economy for retrofit and its extra CO2 emission were taken into consideration. The Pareto front was obtained through ~ constraint method. The procedure and effects of the proposed approach were exemplified through a heat exchanger network in a wax oil hydrotreating unit. The Pareto front representing the trade-off between total annual costs for retrofit and total annual CO2 emission was obtained, and the optimal retrofit schemes under different annual CO2 emissions were obtained accordingly. The proposed method provides theoretical fundamentals of a multi-objective optimization for CO2 emission reduction in refineries.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期702-706,共5页 Journal of East China University of Science and Technology
基金 陕西省自然科学基金项目(2012JM2001) 国家自然科学基金重点项目(20936004)
关键词 炼化系统 CO2减排 能量系统改造 多目标优化 PARETO前沿 refinery CO2 emission reduction retrofit of energy utilization system multi-objectiveoptimization Pareto front
  • 相关文献

参考文献16

  • 1Fenn J. China grapples with a burning question[J]. Science,2009, 315(5948): 1646.
  • 2Abu Zahra M R M, Feron P H M, Jansens P J, etal. New process concepts for CO2 post combustion capture process in- tegrated with co-production of hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(9) : 3992-4004.
  • 3Gielen D J, Moriguchi Y, Yagita H. CO2 emission reduction for Japanese petrochemicals[J]. Journal of Cleaner Produe tion, 2002, 10(6): 589-604.
  • 4李雪静,乔明,郑轶丹.世界炼油工业二氧化碳减排进展[J].中外能源,2010,15(5):64-70. 被引量:9
  • 5Kuramochi T, Ramirez A, Turkenburg W, et al. Compara tive assessment of CO2 capture technologies for carbon inten sire industrial processes[J].Progress in Energy and Combus tion Science, 2012, 38(1) : 87-112.
  • 6杨友麒.节能减排的全局过程集成技术的研究与应用进展[J].化工进展,2009,28(4):541-548. 被引量:11
  • 7Gadalla M, Olujic Z, Jobson M, et al. Estimation and reduc- tion of CO2 emissions from crude oil distillation units[J]. En ergy, 2006, 31(13) : 2398-2408.
  • 8Ordorica Garcia G, Elkamel A, Douglas P L, et al. Energy optimization model with CO2-emission constraints for the ca nadian oil sandsindustry[J]. Energy 8. Fuels, 2008, 22(4): 2660-2670.
  • 9汪刚,冯霄.基于能量集成的CO_2减排量的确定[J].化工进展,2006,25(12):1467-1470. 被引量:63
  • 10贾小平,刘彩洪,钱宇.碳夹点分析技术与化工园区能源规划[J].现代化工,2009,29(9):81-83. 被引量:11

二级参考文献76

  • 1任仁.温室气体及其全球增暖潜势[J].大学化学,1996,11(5):26-30. 被引量:5
  • 2杨友麒.质量交换网络[J].化工进展,2007,26(2):284-289. 被引量:6
  • 3Linnhoff B, et al. User Guide on Process Integration for the Efficient Use of Energy[C]//The Inst. of Chem. Engineers, England, 1982.
  • 4Linnhoff B. Use pinch analysis to knock down capital costs and emissions[J]. Chem. Eng. Prog., 1994, 90 (8): 32-57.
  • 5Dhole V R, Linnhoff B. Total site targets for fuel, co-generation, emissions and cooling[J]. Computers and Chem. Eng., 1992, 17: 101-109.
  • 6Smith R. State-of the-art in process integration[J].Applied Them. Eng., 2000, 20: 1337-1345.
  • 7Klemes J, Stehlik P.Recent adavances on heat, chemical and process intgratioon[J]. Applied Them. Eng., 2006, 26: 1339-1344.
  • 8Rossiter A P.Succeed at process integration[J]. Chem. Eng. Prog., 2004, 100(1): 58-62.
  • 9Zhu X X, Vaideeswaran L, Recent research development of process integration in analysis and optimization of energy systems[J]. Applied Thermol Engineering, 2000, 20: 1381-1392.
  • 10Marechal F, Kalitventzeff B. Energy integration of industrial sites: tools, methodology and application[J].Appl. Thermal Eng., 1998, 18: 921-933.

共引文献130

同被引文献30

  • 1Hipólito-Valencia B J, Lira-Barragán L F, Ponce-Ortega J M,Serna-González M, El-Halwagi M M. Multiobjective design ofinterplant trigeneration systems [J]. AIChE Journal, 2014, 60(1):213-236.
  • 2Yuan Z, Chen B. Process synthesis for addressing the sustainableenergy systems and environmental issues [J]. AIChE Journal, 2012,58(11): 3370-3389.
  • 3Kleme? J J, Varbanov P S, Kravanja Z. Recent developments inprocess integration [J]. Chemical Engineering Research and Design,2013, 91(10): 2037-2053.
  • 4Kleme? J J, Varbanov P S. Heat integration including heatexchangers, combined heat and power, heat pumps, separationprocesses and process control [J]. Applied Thermal Engineering,2012, 43: 1-6.
  • 5Rezaei H, Zarei M, Fazlollahi F, Sarkari M, Shahraki F, Baxter L L.Energy saving in a crude distillation unit by a retrofit design of heatexchanger networks [J]. Indian Journal of Chemical Technology,2013, 20(4): 290-293.
  • 6Bagajewicz M, Valtinson G. On the minimum number of units in heatexchanger networks [J]. Industrial & Engineering ChemistryResearch, 2014.
  • 7Mahmoud A, Shuhaimi M, Abdel Samed M. A combined processintegration and fuel switching strategy for emissions reduction inchemical process plants [J]. Energy, 2009, 34(2): 190-195.
  • 8Tiew B J, Shuhaimi M, Hashim H. Carbon emission reductiontargeting through process integration and fuel switching withmathematical modeling [J]. Applied Energy, 2012, 92 :686-693.
  • 9Waheed M A, Oni A O, Adejuyigbe S B, Adewumi B A, Fadare D A.Performance enhancement of vapor recompression heat pump [J].Applied Energy, 2014, 114: 69-79.
  • 10Wu S, Li H, Cheng J, Tian C. Current situations and technicaldevelopment of energy-savings in China refrigeration industries [J].Applied Thermal Engineering, 2013, 53(2): 271-277.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部