期刊文献+

基于Kriging代理模型的PX氧化过程优化 被引量:3

PX Oxidation Process Optimization Based on Kriging Surrogate Model
下载PDF
导出
摘要 基于流程仿真模型的复杂化工过程优化,往往需要较长的优化时间,效率低下,因此提出了用拉丁超立方采样和Kriging建模法构造流程仿真模型的代理模型,建立基于Kriging代理模型的多目标优化策略。将该策略应用于PX氧化反应过程优化,结果表明:所建立的Kriging代理模型的3个目标的输出精度都控制在1%以内,建模精度高。采用改进的多目标粒子群算法对此Kriging代理模型进行优化,不但能收敛到全局最优解,而且与PX流程仿真模型优化相比,优化时间大大减少,提高了优化效率。因此,在满足精度要求的前提下,Kriging代理模型可以代替PX流程仿真模型来进行优化,并具有较高的优化效率。 Based on the process simulation model, complex chemical process optimization often takes a long time and has low efficiency. By using latin hypercube sampling and Kriging modeling method, a multi-objective optimization strategy based on Kriging model is proposed, then this strategy is applied to PX oxidation reaction process optimization. The simulation results show that the precision of the established Kriging surrogate model for three goals output is less than 1~. Improved multi-objective particle algorithm is used to optimize Kriging surrogate model, not only global optimal solution can be obtained, but also running time is saved obviously compared with the process simulation model. Therefore, Kriging model can take place of the PX process simulation model to realize optimization at the condition of meeting the requirement of accuracy, and has high optimization efficiency.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期712-717,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金重点项目(U1162202) 国家自然科学基金(61174118) 国家"863"计划(2012AA040307) 中央高校基本科研业务费专项 上海市重点学科建设项目(B504)
关键词 多目标优化 拉丁超立方采样 Kriging代理模型 PX氧化过程 multi-objective optimization latin hypercube sampling Kriging surrogate model PXoxidation process
  • 相关文献

参考文献9

  • 1Burri D R, Jun K W, Yoo J S, etal. Combined promotional effect of CO2 and Ni on Co/Mn/Br catalyst in the liquid-phase oxidation of p-xylene[J]. Catalysis Letter, 2002, 81(3/4): 169-173.
  • 2Jhung S. Liquid phase oxidation of p xylene: Effects of po- tassium with various reaction conditions [J]. Bull Korean Chem Soc, 2002, 23(3): 503-506.
  • 3Lophaven S N, Nielsen H B, Sondergaard J. DACE a Matlab Kriging toolbox[R]. Denmark: Informatics and Mathemati- cal Modelling, 2005.
  • 4Coello C, Pulido G, Lechuga M. Handing multiple objective with particle swarm optimization[J].IEEE Transaction on Evolutionary Computation, 2004,8(3) : 256-279.
  • 5Deb K, Pratap A, Agarwal S, etal. A fast and elitist multi objective genetic algorithm: NSGA-II [J]. IEEE Transac- tions on Evolutionary Computation, 2002, 6(2):182-197.
  • 6牟盛静,苏宏业,古勇,褚健.Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process[J].Chinese Journal of Chemical Engineering,2003,11(5):536-541. 被引量:11
  • 7He Hong, Du Wenli, Qian Feng, et al. Operation condition optimization of p xylene oxidation reaction process based on a fuzzy adaptive immune algorithm[J]. Industrial Engineering Cheistry Research, 2010, 49(12): 5683-5693.
  • 8祁荣宾,钱锋.基于多目标进化算法的对二甲苯氧化反应过程优化操作[J].化工学报,2010,61(12):3155-3161. 被引量:1
  • 9McKay M D, Conover W J, Beckman R J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics, 1979, 21(2): 239-245.

二级参考文献3

共引文献10

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部