期刊文献+

CH-γ方程的对称和守恒律

Admitted Symmetries and Conservation Laws of CH-γ Equation
下载PDF
导出
摘要 主要研究了CH-γ方程的对称和守恒律.首先,利用对称的经典算法及符号软件Maple,分情形探讨了CH-γ方程的Lie点对称和3阶对称,还由点对称的思想获得了它的新形式解;其次,当特征函数所依赖的变量不同时,用第一同伦公式的方法构造了CH-γ方程的守恒律,拓展了CH-γ方程已有的研究成果. This paper mainly studies the admitted symmetries and conservation laws of the CH-y equation. Firstly, the Lie point symmetry and third-order symmetry of CH -y equation are discussed in cases by using the classical algorithms and symbolic software Maple. Also by the point symmetry ideology, its new form solutions are gained. Secondly, when the dependent variables of characteristic function varying, conservation laws of CH-y equation are constructed by means of the first homotopy formula method, which expand the existing research results of the CH-y equation.
作者 康周正
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期26-29,共4页 Journal of Henan Normal University(Natural Science Edition)
关键词 CH-γ方程 对称 第一同伦公式 守恒律 CH-y equation symmetries first homotopy formula conservation laws
  • 相关文献

参考文献6

二级参考文献24

  • 1GUO Boling & LIU Zhengrong Institute of Applied Physics and Computational Mathematics, Beijing 100088, China,School of Mathematical Sciences and Center for Nonlinear Science Studies, South China University of Technology, Guangzhou 510640, China.Two new types of bounded waves of CH-γ equation[J].Science China Mathematics,2005,48(12):1618-1630. 被引量:12
  • 2ZHANG WenlingDepartment of Mathematics and Physics, National Natural Science Foundation of China, Beijing 100085, China.General expressions of peaked traveling wave solutions of CH-γ and CH equations[J].Science China Mathematics,2004,47(6):862-873. 被引量:10
  • 3郭柏灵,刘正荣.Peaked wave solutions of CH-r equation[J].Science China Mathematics,2003,46(5):696-709. 被引量:2
  • 4Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993,71(11): 1661-1664.
  • 5Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation. Appl Math Comput, 1997, 81(2-3): 173-187.
  • 6Cooper F, Shepard H. Solitons in the Camassa-Holm shallow water equation. Phys Lett A, 1994, 194(4):246-250.
  • 7Constantin A. Soliton interactions for the Camassa-Holm equation. Exposition Math, 1997, 15(3): 251-264.
  • 8Liu Z G, Qian T F. Peakons of the Camassa-Holm equation. Applied Mathematical Modelling, 2002, 26:473-480.
  • 9Constantin A. Quasi-periodicity with respect to time of spatially periodic finite-gap solution of the CamassaHolm equation. Bull Sci Math, 1998, 127(7): 487-494.
  • 10Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation. J Differential equations,1997, 141(2): 218-235.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部