摘要
利用非线性动力学理论,讨论了带有参数的Sprott-O系统的混沌特性.利用数值方法得到系统的混沌吸引子和周期态.在(2.65,2.95)区间内,运用全局分岔图和Lyapunov指数图准确地表征了系统在此区间内丰富的非线性行为.通过局部放大的全局分岔图,发现系统发生了倒倍周期分岔现象.最后应用直接延迟反馈法对系统的混沌运动进行了控制,使系统的混沌运动控制到稳定的低周期运动状态.
In this paper, the chaotic characters of modified Sprott-O system were studied base on the nonlinear dynamical theory . By introducing the numerical methods, the chaotic attractor and periodical stations were shown. The dynamic behavior of Sprott-O system was presented by the global bifurcation graph, the Lyapunov exponent and poincare section when c∈(2.65, 2.95) . Finally the system was controlled by the time delay feedback control method, which makes the system to be low periodical orbit.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第6期59-62,共4页
Journal of Henan Normal University(Natural Science Edition)
基金
陕西省自然科学基金(2010JQ1013)
陕西省教育厅专项科研基金(01JK060
2010JK896)
陕西省咸阳师范学院自然科学基金(10XSYK301)
关键词
混沌吸引子
延迟反馈
混沌控制
chaotic attractor
time delay feedback
chaos control