期刊文献+

基于高斯过程响应面的结构有限元模型修正方法 被引量:16

Structural finite element model updating based on Gaussian process response surface methodology
下载PDF
导出
摘要 作为一种基于贝叶斯原理的非参数模型,高斯过程模型近年来得到研究人员的广泛关注。高斯过程具有灵活的协方差函数形式、预测精度高和量化预测不确定性等优点。基于此,提出一种基于高斯过程响应面的有限元模型修正方法,并介绍了高斯过程响应面方法的基本理论。算例结果表明,相对于传统参数型响应面方法,高斯过程响应面方法应用于有限元模型修正更具优势。 As Bayesian framework-based and nonparametric models, Gaussian process (GP) models draw a considerable attention of researchers in recent years. GP models have many advantages, including the flexibility of the forms of covariance functions, high accuracy of prediction, quantifying the prediction quality with uncertainties and so on. Here, a novel model updating technique based on GP response surface methodology (RSM) was proposed, and the relevant basic principle was elaborated. Results of numerical examples showed that GP response surface is superior to the traditional response surfaces, i. e. , the polynomial models in structural finite element (FE) model updating.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第24期82-87,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51078357) 教育部博士点基金(20090162110051)
关键词 有限元模型修正 高斯过程 响应面 试验设计 优化 FE model updating Gaussian process response surface design of experiments optimization
  • 相关文献

参考文献3

二级参考文献23

共引文献119

同被引文献182

引证文献16

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部